ECE215

Lecture - 6

Date: 22.08.2016

- AC Circuits: Sinusoids and Phasors

ECE215

Sinusoids

- A sinusoid is a signal that has the form of the sine or cosine function.
- A sinusoidal current is usually referred to as alternating current (ac). Such a current reverses at regular time intervals and has alternately positive and negative values.
- Circuits driven by sinusoidal current or voltage sources are called ac circuits.
- Lets consider the sinusoidal voltage: $v(t)=V_{m} \sin \omega t$

$$
\begin{aligned}
V_{m} & =\text { the amplitude of the sinusoid } \\
\omega & =\text { the angular frequency in radians/s } \\
\omega t & =\text { the argument of the sinusoid }
\end{aligned}
$$

As a function of argument

As a function of time
the sinusoid repeats itself every T seconds $\rightarrow T$ is the period of the sinusoid.

$$
T=\frac{2 \pi}{\omega}
$$

ECE215

Sinusoids (contd.)

$$
v(t+T)=V_{m} \sin \omega(t+T)=V_{m} \sin \omega\left(t+\frac{2 \pi}{\omega}\right)
$$

$$
\Rightarrow=V_{m} \sin (\omega t+2 \pi)=V_{m} \sin \omega t=v(t)
$$

v has the same value at $t+T$ as it does at t and is said to be periodic

> a periodic function satisfies $f(t)=f(t+n T)$, for all t and for all integers n.

- The reciprocal of T is the number of cycles per second, known as the cyclic frequency f of the sinusoid.

$$
f=\frac{1}{T}
$$

$\longrightarrow \omega$ is in radians per second (rad/s), fis in hertz (Hz).

- a more general expression for the sinusoid: $v(t)=V_{m} \sin (\omega t+\phi)$

Where $(\omega t+\varphi)$ is the argument and φ is the phase and both can be in radians or degrees

Sinusoids (contd.)

- two sinusoids: $v_{1}(t)=V_{m} \sin \omega t$

$$
v_{2}(t)=V_{m} \sin (\omega t+\phi)
$$

If $\varphi \neq 0$, then v_{1} and v_{2} are out of phase.
they reach their minima and maxima at exactly the same time

We can compare both in this manner because they operate at the same frequency; they do not need to have the same amplitude.

ECE215

Sinusoids (contd.)

- A sinusoid can be expressed in either sine or cosine form.
- When comparing two sinusoids, it is expedient to express both as either sine or cosine with positive amplitudes.

$$
\begin{aligned}
\sin \left(\omega t \pm 180^{\circ}\right) & =-\sin \omega t \\
\cos \left(\omega t \pm 180^{\circ}\right) & =-\cos \omega t \\
\sin \left(\omega t \pm 90^{\circ}\right) & = \pm \cos \omega t \\
\cos \left(\omega t \pm 90^{\circ}\right) & =\mp \sin \omega t
\end{aligned}
$$

- With these identities:
- This is achieved by using the following trigonometric identities:

$$
\begin{aligned}
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B
\end{aligned}
$$

Use these to transform a sinusoid from sine form to cosine form or vice versa.

ECE215

Sinusoids (contd.)

Alternative Graphical Approach:

- the horizontal axis represents the magnitude of cosine
- the vertical axis (pointing down) denotes the magnitude of sine.
- Angles are measured positively counterclockwise from the horizontal, as usual in polar coordinates.

$$
\sin \left(\omega t+180^{\circ}\right)
$$

graphical technique can also be used to add two sinusoids of the same frequency when one is in sine form and the other is in cosine form.

ECE215

Sinusoids (contd.)

ECE215

Example-1

A current source in a linear circuit is $i_{s}=8 \cos \left(500 \pi t-25^{\circ}\right) \mathrm{A}$
a) What is the amplitude of the current?
b) What is the angular frequency?
c) Find the frequency of the current.
d) What is i_{s} at $\mathrm{t}=2 \mathrm{~ms}$.

Example-2

Given $v_{1}=20 \sin \left(\omega t+60^{\circ}\right)$ and $v_{2}=60 \sin \left(\omega t-10^{\circ}\right)$ determine the phase angle between the two sinusoids and which one lags the other.

Example - 3

For the following pairs of sinusoids, determine which one leads and by how much.
(a) $v(t)=10 \cos \left(4 t-60^{\circ}\right)$ and $i(t)=4 \sin \left(4 t+50^{\circ}\right)$
(b) $v_{1}(t)=4 \cos \left(377 t+10^{\circ}\right)$ and $v_{2}(t)=-20 \cos 377 t$
(c) $x(t)=13 \cos 2 t+5 \sin 2 t$ and $y(t)=15 \cos \left(2 t-11.8^{\circ}\right)$

ECE215

Phasors

- phasor is a complex number that represents amplitude and phase of a sinusoid.
- phasors provide a simple means of analyzing linear circuits excited by sinusoidal sources.

Complex Number:

$$
\begin{array}{ll}
z=x+j y & \\
z=r \angle \phi & \\
z=r e^{j \phi} & \\
\text { Polar form } \\
z=x p o n e n t i a l ~ f o r m ~
\end{array}
$$

Given x and y, we can get r and φ as:

$$
r=\sqrt{x^{2}+y^{2}}, \quad \phi=\tan ^{-1} \frac{y}{x}
$$

if we know r and φ we can obtain x and y as

$$
x=r \cos \phi, \quad y=r \sin \phi
$$

ECE215

Phasors (contd.)

- Addition and subtraction of complex numbers are easier in rectangular form; multiplication and division are simpler in polar form.

$$
z=x+j y=r \angle \phi, \quad z_{1}=x_{1}+j y_{1}=r_{1} \angle \underline{\phi_{1}} \quad z_{2}=x_{2}+j y_{2}=r_{2} \angle \phi_{2}
$$

Addition: $z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+j\left(y_{1}+y_{2}\right)$
Subtraction: $z_{1}-z_{2}=\left(x_{1}-x_{2}\right)+j\left(y_{1}-y_{2}\right)$
Multiplication: $z_{1} z_{2}=r_{1} r_{2} / \phi_{1}+\phi_{2}$
Division: $\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} / \phi_{1}-\phi_{2}$
Reciprocal: $\frac{1}{z}=\frac{1}{r} L-\phi$
idea of phasor representation is based on Euler's identity:

$$
e^{ \pm j \phi}=\cos \phi \pm j \sin \phi
$$

$$
\cos \phi=\operatorname{Re}\left(e^{j \phi}\right)
$$

$$
\sin \phi=\operatorname{Im}\left(e^{j \phi}\right)
$$

Square Root: $\sqrt{z}=\sqrt{r} \angle \phi / 2$
Complex Conjugate: $z^{*}=x-j y=r /-\phi=r e^{-j \phi}$

ECE215

Phasors (contd.)

$$
v(t)=V_{m} \cos (\omega t+\phi)=\operatorname{Re}\left(V_{m} e^{j(\omega t+\phi)}\right)
$$

$$
v(t)=\operatorname{Re}\left(V_{m} e^{j \phi} e^{j \omega t}\right)
$$

to obtain the sinusoid corresponding to a given phasor \mathbf{V}, multiply the phasor by the time factor and take the real part.

As a complex quantity, a phasor may be expressed in rectangular form, polar form, or exponential form.

$$
v(t)=\begin{array}{rll}
& V_{m} \cos (\omega t+\phi) \\
& \begin{array}{l}
\text { (Time-domain } \\
\text { representation) }
\end{array} & \quad \mathbf{V}=V_{m / \phi} \\
& \begin{array}{l}
\text { (Phasor-domain } \\
\text { representation) }
\end{array}
\end{array}
$$

Phasor domain is also called frequency domain

ECE215

Phasors (contd.)

(Time domain)
(Phasor domain)

(Time domain)

(Phasor domain)

The differences between $v(t)$ and \mathbf{V} should be understood:

1. $v(t)$ is the instantaneous or time domain representation, while \mathbf{V} is the frequency or phasor domain representation.
2. $v(t)$ is time dependent, while \mathbf{V} is not.
3. $v(t)$ is always real with no complex term, while \mathbf{V} is generally complex.

ECE215

Example-4
If $f(\phi)=\cos \phi+j \sin \phi$, show that $f(\phi)=e^{j \phi}$.

Example - 5

Find the phasors corresponding to the following signals:
(a) $v(t)=21 \cos \left(4 t-15^{\circ}\right) \mathrm{V}$
(b) $i(\mathrm{t})=-8 \sin \left(10 t+70^{\circ}\right) \mathrm{mA}$
(c) $v(t)=120 \sin \left(10 t-50^{\circ}\right) \mathrm{V}$
(d) $i(\mathrm{t})=-60 \cos \left(30 t+10^{\circ}\right) \mathrm{mA}$

Example-6

Obtain the sinusoids corresponding to each of the following phasors:
(a) $\mathbf{V}_{1}=60 \angle 15^{\circ} \mathrm{V}, \omega=1$
(b) $\mathbf{V}_{2}=6+\mathrm{j} 8 \mathrm{~V}, \omega=40$
(c) $\mathbf{I}_{1}=2.8 \mathrm{e}^{-j \pi / 3} \mathrm{~A}, \omega=377$
(d) $\mathbf{I}_{2}=-0.5-\mathrm{j} 1.2 \mathrm{~A}, \omega=10^{3}$

ECE215

Example-7

Simplify the following:
(a) $f(t)=5 \cos \left(2 t+155^{\circ}\right)-4 \sin \left(2 t-30^{\circ}\right)$
(b) $g(t)=8 \sin t+4 \cos \left(t+50^{\circ}\right)$
(c) $h(t)=\int_{0}^{t}(10 \cos 40 t+50 \sin 40 t) d t$

Example-8

Using phasors, determine $i(t)$ in the following equations:
(a) $2 \frac{d i}{d t}+3 i(t)=4 \cos \left(2 t-45^{\circ}\right)$
(b) $10 \int i d t+\frac{d i}{d t}+6 i(t)=5 \cos \left(5 t+22^{\circ}\right)$

ECE215

Phasor Relationships for Circuit Elements

If the current through a resistor R is $i=I_{m}(\cos \omega t+$ φ), then the voltage across it is given by Ohm's law as:

$$
v=i R=R I_{m} \cos (\omega t+\phi)
$$

$$
\mathbf{V}=R I_{m} / \phi \quad \mathbf{V}=R \mathbf{I}
$$

\therefore voltage-current relation for the resistor in the phasor domain continues to be Ohm's law

For the inductor L , assume current $i=I_{m}(\cos \omega t+$ φ), then the voltage across it is:

$$
\begin{gathered}
v=L \frac{d i}{d t}=-\omega L I_{m} \sin (\omega t+\phi) \\
v=\omega L I_{m} \cos \left(\omega t+\phi+90^{\circ}\right)
\end{gathered}
$$

ECE215

Phasor Relationships for Circuit Elements

$v=\omega L I_{m} \cos \left(\omega t+\phi+90^{\circ}\right)$

$$
\mathbf{V}=\omega L I_{m} e^{j\left(\phi+90^{\circ}\right)}=\omega L I_{m} e^{j \phi} e^{j 90^{\circ}}=\omega L I_{m} / \phi+90^{\circ}
$$

$\mathbf{V}=j \omega L \mathbf{I} \quad$ the voltage has a magnitude of $\omega L I_{m}$ and a phase of φ. The voltage and current are 90° out of phase. Specifically, the current lags the voltage by 90°.

$$
\mathbf{I}=j \omega C \mathbf{V} \quad \Rightarrow \quad \mathbf{V}=\frac{\mathbf{I}}{j \omega C}
$$

the current leads the voltage by 90°.

ECE215

Example - 9

What is the instantaneous voltage across a $2 \mu \mathrm{~F}$ capacitor when the current through it is $i=4 \sin \left(10^{6} t+25^{\circ}\right) A$?

Example - 10

A voltage $v(t)=100 \cos \left(60 t+20^{\circ}\right) \mathrm{V}$ is applied to a parallel combination of a $40 \mathrm{k} \Omega$ resistor and a $50 \mu \mathrm{~F}$ capacitor. Find the steady-state currents through the resistor and the capacitor.

Example-11

A series $R L C$ circuit has $R=80 \Omega, L=240 \mathrm{mH}$, and $C=5 \mathrm{mF}$. If the input voltage is $v(t)=100 \cos (2 t)$, find the current flowing through the circuit.

