

<u>Lecture – 2</u>

Date: 04.08.2016

• First-Order Circuit – Review

First Order Circuit

A first order circuit is characterized by first-order differential equation

This comes in two types of configs:

- a) RL Circuit
- b) RC Circuit

excitation, (b) with excitation

 $w(0) = \frac{1}{2}CV_0^2$

Two possible scenarios: (a) without

This will result when the dc source is suddenly disconnected and in this scenario the energy stored in the capacitor gets released to the resistors.

Need to determine v(t), $i_c(t)$, and $i_R(t)$

Assume: $v(0) = V_0$

Initial charging voltage of the capacitor

Therefore the energy stored in the capacitor:

First Order Circuit (contd.)

From initial condition: $v(0) = A = V_0$

 $\therefore v(t) = V_0 e^{-t/RC}$ Exponential Decay Natural Response

The time constant of a circuit is the time required for the response to decay to a factor of $\frac{1}{e}$

First Order Circuit (contd.)

Example – 1

In the circuit shown:

$$v(t) = 56e^{-200t}$$
 V, $t > 0$
 $i(t) = 8e^{-200t}$ mA, $t > 0$

(a) Find the values of *R* and *C*.
(b) Calculate the time constant *τ*.
(c) Determine the time required for the voltage to decay half its initial value at *t* = 0.

Example – 2

The switch in this circuit has been closed for a long time, and it opens at t = 0. Find v(t) for $t \ge 0$.

Example – 3

Find $v_0(t)$ for t > 0. Determine the time necessary for the capacitor voltage to decay to one-third of its value at t = 0.

First Order Circuit (contd.)

• The energy absorbed by the resistor up to time $w_R(t) = \int_0^t p(j)dj = \frac{1}{2}LI_0^2 \left(1 - e^{-\frac{2t}{\tau}}\right)$ t is:

For
$$t \to \infty$$
 we get $w_R(\infty) \frac{1}{2} LI_0^2$

Example – 4

find i_0 for t > 0.

(a) Find R, L, and τ .

(b) Calculate the energy dissipated in the resistance for 0 < t < 0.5 ms.

Example – 6

Find
$$v_0(t)$$
 if *i*(0) = 2A and *v*(*t*) = 0.

Step Response of an RC Circuit

Assume an initial voltage V₀ on the capacitor

• Voltage on a capacitor cannot change instantaneously: $v(0^-) = v(0^+) = V_0$

$$C\frac{dv}{dt} + \frac{v - V_s u(t)}{R} = 0 \qquad \longrightarrow \qquad \frac{dv}{dt} + \frac{v}{RC} = \frac{V_s}{RC} u(t)$$

For $t > 0$: $\frac{dv}{dt} + \frac{v}{RC} = \frac{V_s}{RC} \qquad \longrightarrow \qquad \frac{dv}{v - V_s} = -\frac{dt}{RC}$

Response

Step Response of an RC Circuit (contd.)

$$i(t) = C \frac{dv}{dt} = \frac{C}{\tau} V_s e^{-t/\tau}$$
$$i(t) = \frac{V_s}{R} e^{-t/\tau} u(t)$$

Step Response of an RC Circuit (contd.)

• Essentially we can express: $v(t) = v(\infty) + [v(0) - v(\infty)]e^{-t/\tau}$

Step Response of an RC Circuit (contd.)

- For the determination of the step response of an *RC* circuit we require:
 - 1. The initial capacitor voltage v(0)
 - 2. The final capacitor voltage $v(\infty)$
 - 3. The time constant au.

We can obtain v(0) from the given circuit for t<0 and $v(\infty)$ and τ from the circuit for t>0.

Example – 7

Calculate the capacitor voltage for *t* < 0 and *t* > 0 for both the circuits.

Example – 8

Calculate the capacitor voltage for *t* < 0 and *t* > 0 for both the circuits.

Step Response of an RL Circuit

Complete Response: $i = i_t + i_{ss}$

$$i_t = Ae^{-t/\tau}, \qquad \tau = \frac{L}{R} \qquad \qquad i_{ss} = \frac{V_s}{R}$$

• Now the current through the inductor cannot change instantaneously:

 $i(0^+) = i(0^-) = I_0$

Step Response of an RL Circuit (contd.)

At t=0:
$$I_0 = A + \frac{V_s}{R}$$
 $A = I_0 - \frac{V_s}{R}$ $i(t) = \frac{V_s}{R} + (I_0 - \frac{V_s}{R})e^{-t/\tau}$
 $i(t) = i(\infty) + [i(0) - i(\infty)]e^{-t/\tau}$
• For $I_0=0$
 $i(t) = \begin{cases} 0, & t < 0 \\ \frac{V_s}{R}(1 - e^{-t/\tau}), & t > 0 \end{cases}$
 $i(t) = \frac{V_s}{R}(1 - e^{-t/\tau})u(t)$

Step Response of an RL Circuit (contd.)

• The voltage across the inductor:

$$v(t) = L\frac{di}{dt} = V_s \frac{L}{\tau R} e^{-t/\tau}, \quad \tau = \frac{L}{R}, \quad t > 0 \quad r(t) = V_s e^{-t/\tau} u(t)$$