Lecture - 22

- Multi-port networks
- Impedance and Admittance Matrix
- Matched, Lossless, and Reciprocal Networks

2-port Networks

- Requirement of Matrix Formulation

What is the way?
Impedance or Admittance Matrix. Right?
In principle, N by N impedance matrix completely characterizes a linear N port device. Effectively, the impedance matrix defines a multi-port device the way a Z_{L} describes a single port device (e.g., a load)

Linear networks can be completely characterized by parameters measured at the network ports without knowing the content of the networks.

Multiport Networks

- Networks can have any number of ports - however, analysis of a 2-port, 3-port or 4-port network is sufficient to explain the theory and the associated concepts.

- The ports can be characterized with many parameters (Z, Y, S, ABCD). Each has a specific advantage.
- For 2-port Network, each parameter set is related to 4 variables:
- 2 independent variables for excitation
- 2 dependent variables for response

The Impedance Matrix

- Let us consider the following 4-port network:

Four identical cables used to connect this network to the outside world

This could be a simple linean device or a large/complex linear system

Either way, the network can be fully described by its impedance matrix

The arbitrary locations are known as ports of the network

The Impedance Matrix (contd.)

- In principle, the current and voltages at the port-n of networks are given as: $\quad V_{n}\left(z_{n}=z_{n P}\right) \quad I_{n}\left(z_{n}=z_{n P}\right)$
- However, the simplified formulations are:

$$
V_{n}=V_{n}\left(z_{n}=z_{n P}\right) \quad I_{n}=I_{n}\left(z_{n}=z_{n P}\right)
$$

- If we want to say that there exists a nonzero current at port-1 and zero current at

$$
I_{1} \neq 0 \quad I_{2}=I_{3}=I_{4}=0
$$ all other ports then we can write as:

- In order to define the elements of impedance matrix, there will be need to measure/determine the associated voltages and currents at the respective ports. Suppose, if we measure/determine current at port-1 and

Transimpedance then voltage at port-2 then we can define:

- Similarly, the trans-impedance parameters Z_{31} and Z_{41} are:

$$
Z_{31}=\frac{V_{3}}{I_{1}}
$$

$$
Z_{41}=\frac{V_{4}}{I_{1}}
$$

The Impedance Matrix (contd.)

- We can define other trans-impedance parameters such as Z_{34} as the ratio between the complex values I_{4} (into port-4) and V_{3} (at port-3), given that the currents at all other ports (1,2 , and 3) are zero.
- Therefore, the more generic form of trans-impedance is:

$$
\left.Z_{m n}=\frac{V_{m}}{I_{n}} \quad \text { (given that } \mathrm{I}_{\mathrm{k}}=\mathbf{0} \text { for all } \mathrm{k} \neq \mathrm{n}\right)
$$

How do we ensure that all but one port current is zero?

The Impedance Matrix (contd.)

- Open the ports where the current needs to be zero

The ports should be opened! not the cables connected to the ports

- We can then define the respective trans-impedances as:

$$
Z_{m n}=\frac{V_{m}}{I_{n}}
$$

(given that all ports $\mathbf{k} \neq \mathbf{n}$ are open)

The Impedance Matrix (contd.)

- Once we have defined the trans-impedance terms by opening various ports, it is time to formulate the impedance matrix
- Since the network is linear, the voltage at any port due to all the port currents is simply the coherent sum of the voltage at that port due to each of the currents
- For example, the voltage at port-3 is: $V_{3}=Z_{34} I_{4}+Z_{33} I_{3}+Z_{32} I_{2}+Z_{31} I_{1}$
- Therefore we can generalize the voltage for N -port network as:

$$
V_{m}=\sum_{n=1}^{N} Z_{m n} I_{n} \quad \Rightarrow \mathbf{V}=\mathbf{Z} \mathbf{I}
$$

- Where I and V are vectors given as:

$$
\mathbf{V}=\left[\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \ldots, \mathrm{~V}_{\mathrm{N}}\right]^{T} \quad \mathbf{I}=\left[\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}, \ldots ., \mathrm{I}_{\mathrm{N}}\right]^{T}
$$

- The term Z is matrix given by:

Impedance Matrix

The Admittance Matrix

- Let us consider the 4-port network again:

The Admittance Matrix (contd.)

- The trans-admittances $Y_{m n}$ are defined as:

$$
Y_{m n}=\frac{I_{m}}{V_{n}} \quad \text { (given that } \mathbf{V}_{\mathbf{k}}=0 \text { for all } \mathbf{k} \neq \mathbf{n} \text {) }
$$

Important

$$
Y_{m n} \neq \frac{1}{Z_{m n}}
$$

- It is apparent that the voltage at all but one port must be equal to zero. This can be ensured by shortcircuiting the voltage ports.

The ports should be short-circuited! not the TL connected to the ports

- Now, since the network is linear, the current at any one port due to all the port voltages is simply the coherent sum of the currents at that port due to each of the port voltages.

The Admittance Matrix (contd.)

- For example, the current at port-3 is:

$$
I_{3}=Y_{34} V_{4}+Y_{33} V_{3}+Y_{32} V_{2}+Y_{31} V_{1}
$$

- Therefore we can generalize the current for N -port network as:

$$
I_{m}=\sum_{n=1}^{N} Y_{m n} V_{n}
$$

$$
\square \Rightarrow \mathbf{I}=\mathbf{Y V}
$$

- Where I and V are vectors given as:

$$
\mathbf{V}=\left[\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \ldots, \mathrm{~V}_{\mathrm{N}}\right]^{T} \quad \mathbf{I}=\left[\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}, \ldots, \mathrm{I}_{\mathrm{N}}\right]^{T}
$$

- The term Y is matrix given by:

Admittance Matrix

- The values of elements in the admittance matrix are frequency dependents and often it is advisable to describe admittance matrix as:

$$
\boldsymbol{Y}(\omega)=\left[\begin{array}{cccc}
Y_{11}(\omega) & Y_{12}(\omega) & \ldots & Y_{1 n}(\omega) \\
Y_{21}(\omega) & & & \vdots \\
\vdots & & & \\
Y_{m 1}(\omega) & Y_{m 2}(\omega) & \ldots & Y_{m n}(\omega)
\end{array}\right]
$$

The Admittance Matrix (contd.)

You said that:

Answer: Let us see if we can figure it out!

- Recall that we can determine the inverse of a matrix. Denoting

$$
\mathbf{I}=\mathbf{Y V}
$$ the matrix inverse of the admittance matrix as \mathbf{Y}^{-1}, we find:

$$
\Rightarrow \mathbf{Y}^{-1} \mathbf{I}=\mathbf{Y}^{-1}(\mathbf{Y} \mathbf{V}) \quad \mathbf{Y}^{-1} \mathbf{I}=\left(\mathbf{Y}^{-1} \mathbf{Y}\right) \mathbf{V} \quad \square \mathbf{Y}^{-1} \mathbf{I}=\mathbf{V}
$$

- We also know: $\mathbf{V}=\mathbf{Z I}$

$$
\mathbf{Z}=\mathbf{Y}^{-1} \text { OR } \mathbf{Y}=Z^{-14}
$$

Reciprocal and Lossless Networks

- We can classify multi-port devices or networks as either lossless or lossy; reciprocal or non-reciprocal. Let's look at each classification individually.

Lossless Network

- A lossless network or device is simply one that cannot absorb power. This does not mean that the delivered power at every port is zero; rather, it means the total power flowing into the device must equal the total power exiting the device.
- A lossless device exhibits an impedance matrix with an interesting property. Perhaps not surprisingly, we find for a lossless device that the elements of

$$
\operatorname{Re}\left(Z_{m n}\right)=0
$$

For a lossless device its impedance matrix will be purely reactive:

- If the device is lossy, then the elements of the impedance matrix must have at least one element with a real (i.e., resistive) component.
- Furthermore, we can similarly say that if the elements of an admittance matrix are all purely imaginary (i.e., $\operatorname{Re}\left\{Y_{m n}\right\}=0$), then the device is lossless.

Reciprocal and Lossless Networks (contd.)

Reciprocal Network

- Ideally, most passive, linear microwave components will turn out to be reciprocal-regardless of whether the designer intended it to be or not!
- Reciprocity is a tremendously important characteristic, as it greatly simplifies an impedance or admittance matrix!
- Specifically, we find that a reciprocal device will result in a symmetric impedance and admittance matrix, meaning that:

$$
Z_{m n}=Z_{n m} \quad Y_{m n}=Y_{n m} \quad \text { For a reciprocal device }
$$

- For example, we find for a reciprocal device that $Z_{23}=Z_{32}$, and $Y_{12}=Y_{21}$.

Reciprocal and Lossless Networks (contd.)

Example - 1

- determine the \mathbf{Y} matrix of this twoport device.

Example - 1 (contd.)

Step-1: Place a short at port 2

Step-2: Determine currents I_{1} and I_{2}

- Note that after the short was placed at port 2, both resistors are in parallel, with a potential V_{1} across each

$$
I_{1}=\frac{V_{1}}{2 R}+\frac{V_{1}}{R}=\frac{3 V_{1}}{2 R}
$$

- The current I_{2} equals the portion of current I_{1} through R but with opposite sign

$$
I_{2}=-\frac{V_{1}}{R}
$$

Example - 1 (contd.)

Step-3: Determine the trans-admittances Y_{11} and Y_{21}

$$
Y_{11}=\frac{I_{1}}{V_{1}}=\frac{3}{2 R}
$$

Note that Y_{21} is real and negative

This is still a valid physical result, although you will find that the diagonal terms of an impedance or admittance matrix (e.g., $\mathrm{Y}_{22}, \mathrm{Z}_{11}, \mathrm{Y}_{44}$) will always have a real component that is positive

To find the other two trans-admittance parameters, we must move the short and then repeat each of our previous steps!

Example - 1 (contd.)

 Step-1:Place a short at port 1

Step-2: Determine currents I_{1} and I_{2}

- Note that after a short was placed at port 1, resistor 2 R has zero voltage across it—and thus zero current through it!

Therefore:

$$
I_{2}=\frac{V_{2}}{R}
$$

$$
I_{1}=-I_{2}=-\frac{V_{2}}{R}
$$

Step-3:
Determine the trans-admittances Y_{12} and Y_{22}

$$
Y_{12}=\frac{I_{1}}{V_{2}}=-\frac{1}{R}
$$

$$
Y_{22}=\frac{I_{2}}{V_{2}}=\frac{1}{R}
$$

Therefore the admittance matrix is: $\quad \mathbf{Y}=\left[\begin{array}{cc}3 / 2 R & -1 / R \\ -1 / R & 1 / R\end{array}\right] \quad \begin{gathered}\text { Is it lossless } \\ \text { or reciprocal? }\end{gathered}$

Example - 2

- Consider this circuit:

- Where the 3-port device is characterized by the impedance matrix:

$$
Z=\left[\begin{array}{lll}
2 & 1 & 2 \\
1 & 1 & 4 \\
2 & 4 & 1
\end{array}\right]
$$

- determine all port voltages $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$ and all currents $\mathrm{I}_{1}, I_{2}, I_{3}$.

Scattering Matrix

- At "low" frequencies, a linear device or network can be fully characterized using an impedance or admittance matrix, which relates the currents and voltages at each device terminal to the currents and voltages at all other terminals.
- But, at high frequencies, it is not feasible to measure total currents and voltages!
- Instead, we can measure the magnitude and phase of each of the two transmission line waves $\mathrm{V}^{+}(\mathrm{z})$ and $\mathrm{V}^{-}(\mathrm{z}) \rightarrow$ enables determination of relationship between the incident and reflected waves at each device terminal to the incident and reflected waves at all other terminals
- These relationships are completely represented by the scattering matrix that completely describes the behavior of a linear, multi-port device at a given frequency ω, and a given line impedance Z_{0}

Scattering Matrix (contd.)

Note that we have now characterized transmission line activity in terms of incident and "reflected" waves. The negative going "reflected" waves can be viewed as the waves exiting the multi-port network or device.
Viewing transmission line activity this way, we can fully characterize a multi-port device by its parameters!

Scattering Matrix (contd.)

- Say there exists an incident wave on port 1 (i.e., $V_{1}{ }^{+}\left(z_{1}\right) \neq 0$), while the incident waves on all other ports are known to be zero (i.e., $\mathrm{V}_{2}{ }^{+}\left(z_{2}\right)$ $\left.=\mathrm{V}_{3}{ }^{+}\left(\mathrm{z}_{3}\right)=\mathrm{V}_{4}{ }^{+}\left(\mathrm{z}_{4}\right)=0\right)$.

Say we measure/determine the voltage of the wave flowing into port 1, at the port 1 plane (i.e., determine $\mathrm{V}_{1}{ }^{+}\left(\mathrm{z}_{1}=\mathrm{z}_{1 \mathrm{p}}\right)$).

The complex ratio between $\mathrm{V}_{1}{ }^{+}\left(\mathrm{z}_{1}=\mathrm{z}_{1 \mathrm{P}}\right)$ and $\mathrm{V}_{2}^{-}\left(\mathrm{z}_{2}=\mathrm{z}_{2 \mathrm{P}}\right)$ is known as the scattering parameter S_{21}

Scattering Matrix (contd.)
Therefore:

$$
S_{21}=\frac{V_{2}^{-}\left(z_{2}=z_{2 p}\right)}{V_{1}^{+}\left(z_{1}=z_{1 P}\right)}=\frac{V_{2}^{-} e^{+j \beta z_{2 p}}}{V_{1}^{+} e^{-j \beta z_{1 p}}}=\frac{V_{2}^{-}}{V_{1}^{+}} e^{+j \beta\left(z_{2 p}+z_{1 p}\right)}
$$

Similarly: $\quad S_{31}=\frac{V_{3}^{-}\left(z_{3}=z_{3 P}\right)}{V_{1}^{+}\left(z_{1}=z_{1 P}\right)}$

$$
S_{41}=\frac{V_{4}^{-}\left(z_{4}=z_{4 P}\right)}{V_{1}^{+}\left(z_{1}=z_{1 P}\right)}
$$

- We of course could also define, say, scattering parameter S_{34} as the ratio between the complex values $\mathrm{V}_{3}^{-}\left(\mathrm{z}_{3}=\mathrm{z}_{3 \mathrm{p}}\right)$ (the wave out of port 3) and $\mathrm{V}_{4}^{+}\left(\mathrm{z}_{4}=\mathrm{z}_{4 \mathrm{P}}\right)$ (the wave into port 4), given that the input to all other ports $(1,2$ and 3) are zero
- Thus, more generally, the ratio of the wave incident on port n to the wave emerging from port m is:

$$
S_{m n}=\frac{V_{m}^{-}\left(z_{m}=z_{m P}\right)}{V_{n}^{+}\left(z_{n}=z_{n P}\right)} \quad V_{k}^{+}\left(z_{k}\right)=0 \quad \text { for all } \mathbf{k \neq \mathbf { n }}
$$

Scattering Matrix (contd.)

- Note that, frequently the port positions are assigned a zero value (e.g., $\mathrm{z}_{1 \mathrm{P}}=0, S_{m n}=\frac{V_{m}^{-}\left(z_{m}=0\right)}{V_{n}^{+}\left(z_{n}=0\right)}=\frac{V_{m}^{+} e^{+j \beta 0}}{V_{n}^{-} e^{-j \beta 0}}=\frac{V_{m}^{+}}{V_{n}^{-}} \mathrm{z}_{2 \mathrm{P}}=0$). This of course simplifies the scattering parameter calculation:
- We will generally assume that the port locations are defined as $\mathrm{Z}_{\mathrm{np}}=0$, and thus use the above notation. But remember where this expression came from!

Q: How do we ensure that only one incident wave is non-zero?

A: Terminate all other ports with a matched load!

Scattering Matrix (contd.)

- Note that if the ports are terminated in a matched load (i.e., $Z_{L}=Z_{0}$), then $\left(\Gamma_{0}\right)_{n}=0$ and therefore:

$$
V_{n}^{+}\left(z_{n}\right)=0
$$

In other words, terminating a port ensures that there will be no signal incident on that port!

Scattering Matrix (contd.)

Just between you and me, I think you've messed this up! In all previous slides you said that if $\Gamma_{0}=0$, the wave in the minus direction would be zero:

$$
V^{-}(z)=0 \quad \text { if } \quad \Gamma_{0}=0
$$

but just now you said that the wave in the positive direction would be zero:

$$
V^{+}(z)=0 \quad \text { if }
$$

$\Gamma_{0}=0$

Obviously, there is no way that both statements can be correct!

Scattering Matrix (contd.)

Actually, both statements are correct! You must be careful to understand the physical definitions of the plus and minus directions-in other words, the propagation directions of waves $\mathrm{V}_{\mathrm{n}}{ }^{+}\left(\mathrm{z}_{\mathrm{n}}\right)$ and $\mathrm{V}_{\mathrm{n}}{ }^{-}\left(\mathrm{z}_{\mathrm{n}}\right)$!

For example, we originally analyzed this case:

$$
V^{-}(z)=0 \quad \text { if } \quad \Gamma_{0}=0
$$

In this original case, the wave incident on the load is $\mathrm{V}^{+}(\mathrm{z})$ (plus direction), while the reflected wave is $\mathrm{V}^{-}(\mathrm{z})$ (minus direction).

Scattering Matrix (contd.)

Contrast this with the case we are now considering:

- For this current case, the situation is reversed. The wave incident on the load is now denoted as $V_{n}{ }^{-}\left(z_{n}\right)$ (coming out of port n), while the wave reflected off the load is now denoted as $\mathrm{V}_{\mathrm{n}}{ }^{+}\left(\mathrm{z}_{\mathrm{n}}\right)$ (going into port n).

ECE215

Scattering Matrix (contd.)

- back to our discussion of S-parameters. We found that if $z_{n p}=0$ for all ports n, the scattering parameters could be directly written in terms of wave amplitudes $\mathrm{V}_{\mathrm{n}}{ }^{+}$and $\mathrm{V}_{\mathrm{m}}{ }^{-}$

$$
S_{m n}=\frac{V_{m}^{-}}{V_{n}^{+}} \quad V_{k}^{+}\left(z_{k}\right)=0
$$

for all $k \neq n$

- Which we can now equivalently state as:
$S_{m n}=\frac{V_{m}^{-}}{V_{n}^{+}}$
(for all ports, except port n, are terminated in matched loads)
- One more important note-notice that for the ports terminated in matched loads (i.e., those ports with no incident wave), the voltage of the exiting wave is also the total voltage!

$$
V_{m}\left(z_{m}\right)=V_{m}^{+} e^{-j \beta z_{m}}+V_{m}^{-} e^{+j \beta z_{m}}=0+V_{m}^{-} e^{+j \beta z_{m}}=V_{m}^{-} e^{+j \beta z_{m}} \quad \swarrow \quad \begin{gathered}
\text { For all } \\
\text { terminated } \\
\text { ports! }
\end{gathered}
$$

Scattering Matrix (contd.)

- We can use the scattering matrix to determine the solution for a more general circuit-one where the ports are not terminated in matched loads!
- Since the device is linear, we can apply superposition. The output at any port due to all the incident waves is simply the coherent sum of the output at that port due to each wave!
- For example, the output wave at port 3 can be determined by (assuming $\mathrm{z}_{\mathrm{nP}}=0$):
- More generally, the output at port m of an N -port device is:

$$
V_{m}^{-}=\sum_{n=1}^{N} S_{m n} V_{n}^{+} \quad \mathbf{z}_{\mathrm{nP}}=\mathbf{0}
$$

- This expression of Scattering parameter can be written in matrix form as:

$$
\mathrm{V}^{-}=\mathrm{SV}^{+}
$$

Scattering Matrix (contd.)

Scattering Matrix

$$
\boldsymbol{S}=\left[\begin{array}{cccc}
S_{11} & S_{12} & \ldots & S_{1 n} \\
S_{21} & & & \vdots \\
\vdots & & & \\
S_{m 1} & S_{m 2} & \ldots & S_{m n}
\end{array}\right]
$$

- The scattering matrix is N by N matrix that completely characterizes a linear, N-port device. Effectively, the scattering matrix describes a multiport device the way that Γ_{0} describes a single-port device (e.g., a load)!
- The values of the scattering matrix for a particular device or network, like Γ_{0}, are frequency dependent! Thus, it $\boldsymbol{S}(\omega)=$ may be more instructive to explicitly write:

$$
\left[\begin{array}{cccc}
S_{11}(\omega) & S_{12}(\omega) & \ldots & S_{1 n}(\omega) \\
S_{21}(\omega) & & & \vdots \\
\vdots & & & \\
S_{m 1}(\omega) & S_{m 2}(\omega) & \ldots & S_{m n}(\omega)
\end{array}\right]
$$

- Also realize that—also just like Γ_{0}-the scattering matrix is dependent on both the device/network and the Z_{0} value of the TL connected to it.
- Thus, a device connected to transmission lines with $Z_{0}=50 \Omega$ will have a completely different scattering matrix than that same device connected to transmission lines with $Z_{0}=100 \Omega$

Matched, Lossless, Reciprocal Devices

- A device can be lossless or reciprocal. In addition, we can also classify it as being matched.
- Let's examine each of these three characteristics, and how they relate to the scattering matrix.

Matched Device

A matched device is another way of saying that the input impedance at each port is equal to Z_{0} when all other ports are terminated in matched loads. As a result, the reflection coefficient of each port is zero-no signal will come out from a port if a signal is incident on that port (but only that port!).

- In other words: $V_{m}^{-}=S_{m m} V_{m}^{+}=0 \quad$ For all $\mathrm{m} \longrightarrow$ When all the ports ' m ' are matched
- It is apparent that a matched device will exhibit a scattering matrix where all diagonal elements are zero.

$$
\mathbf{S}=\left[\begin{array}{ccc}
0 & 0.1 & j 0.2 \\
0.1 & 0 & 0.3 \\
j 0.2 & 0.3 & 0
\end{array}\right]
$$

Matched, Lossless, Reciprocal Devices (contd.)

Lossless Device

- For a lossless device, all of the power that is delivered to each device port must eventually find its way out!
- In other words, power is not absorbed by the network-no power to be converted to heat!
- The power incident on some port m is related to the amplitude of the incident wave $\left(\mathrm{V}_{\mathrm{m}}{ }^{+}\right)$as:

$$
P_{m}^{+}=\frac{\left|V_{m}^{+}\right|^{2}}{2 Z_{0}}
$$

- The power of the wave exiting the port is:

$$
P_{m}^{-}=\frac{\left|V_{m}^{-}\right|^{2}}{2 Z_{0}}
$$

- power absorbed by that port is the difference of the incident power and reflected power:

$$
\Delta P_{m}=P_{m}^{+}-P_{m}^{-}=\frac{\left|V_{m}^{+}\right|^{2}}{2 Z_{0}}-\frac{\left|V_{m}^{-}\right|^{2}}{2 Z_{0}}
$$

ECE215

Matched, Lossless, Reciprocal Devices (contd.)

- For an N-port device, the total incident power is:

$$
P^{+}=\sum_{m=1}^{N} P_{m}^{+}=\frac{1}{2 Z_{0}} \sum_{m=1}^{N}\left|V_{m}^{+}\right|^{2} \leadsto\left|V_{m}^{+}\right|^{2}=\left(\mathbf{V}^{+}\right)^{H} \mathbf{V}^{+} \longrightarrow
$$

$\left(\mathrm{V}^{+}\right)^{\mathrm{H}}$ is the conjugate transpose of the row vector V^{+}

$$
P^{+}=\sum_{m=1}^{N} P_{m}^{+}=\frac{\left(\mathrm{V}^{+}\right)^{H} \mathrm{~V}^{+}}{2 Z_{0}} \int \xlongequal{\begin{array}{l}
\text { Similarly, the total } \\
\text { reflected power }
\end{array}}
$$

$$
P^{-}=\sum_{m=1}^{N} P_{m}^{-}=\frac{\left(\mathbf{V}^{-}\right)^{H} \mathbf{V}^{-}}{2 Z_{0}}
$$

- Recall that the incident and reflected wave amplitudes are related by the scattering matrix of the device as:

$$
\mathrm{V}^{-}=\mathrm{SV}^{+}
$$

- Therefore:

$$
P^{-}=\frac{\left(\mathbf{V}^{-}\right)^{H} \mathbf{V}^{-}}{2 Z_{0}}=\frac{\left(\mathbf{V}^{+}\right)^{H} \mathbf{S}^{H} \mathbf{S V}^{+}}{2 Z_{0}}
$$

- Therefore the total power delivered to the N-port device is:

$$
\left(\Delta P=P^{+}-P^{-}=\frac{\left(\mathbf{V}^{+}\right)^{H} \mathbf{V}^{+}}{2 Z_{0}}-\frac{\left(\mathbf{V}^{+}\right)^{H} \mathbf{S}^{H} \mathbf{S V}^{+}}{2 Z_{0}}\right)
$$

$$
\Rightarrow \Delta P=\frac{\left(\mathbf{V}^{+}\right)^{H}}{2 Z_{0}}\left(\boldsymbol{I}-\mathbf{S}^{H} \mathbf{S}\right) \mathbf{V}^{+}
$$

Matched, Lossless, Reciprocal Devices (contd.)

- For a lossless device: $\Delta \mathbf{P}=\mathbf{0} \Rightarrow \frac{\left(\mathbf{V}^{+}\right)^{H}}{2 Z_{0}}\left(\boldsymbol{I}-\mathbf{S}^{H} \mathbf{S}\right) \mathbf{V}^{+}=0 \quad$ For all \mathbf{V}^{+}
- Therefore: $\boldsymbol{I}-\mathbf{S}^{H} \mathbf{S}=0$

a special kind of matrix known as a unitary matrix

If a network is lossless, then its scattering matrix S is unitary

- How to recognize a unitary matrix?

The columns of a unitary matrix form an orthonormal set!

Example:

$$
\boldsymbol{S}=\left[\begin{array}{llll}
S_{11} & S_{12} & S_{13} & S_{14} \\
S_{21} & S_{22} & S_{23} & S_{24} \\
S_{31} & S_{32} & S_{33} & S_{34} \\
S_{41} & S_{42} & S_{43} & S_{44}
\end{array}\right]
$$ each column of the scattering matrix will have a magnitude equal to one

$$
\sum_{m=1}^{N}\left|S_{m n}\right|^{2}=1 \quad \text { For all } \mathbf{n}
$$

inner product (i.e., dot product) of dissimilar columns must be zero are orthogonal

$$
\sum_{m=1}^{N} S_{m i} S_{m j}^{*}=S_{1 i} S_{1 j}^{*}+S_{2 i} S_{2 j}^{*}+\ldots .+S_{N i} S_{N j}^{*}=0 \quad \text { For all } \mathbf{i} \neq \mathbf{j}
$$

Matched, Lossless, Reciprocal Devices (contd.)

- For example, for a lossless three-port device: say a signal is incident on port 1, and that all other ports are terminated. The power incident on port 1 is therefore:

- and the power exiting the device at each $P_{m}^{-}=\frac{\left|V_{m}^{-}\right|^{2}}{2 Z_{0}}=\frac{\left|S_{m 1} V_{1}^{+}\right|^{2}}{2 Z_{0}}=\left|S_{m 1}\right|^{2} P_{1}^{+}$
port is:
- The total power exiting the device is therefore:

$$
P^{-}=P_{1}^{-}+P_{2}^{-}+P_{3}^{-}=\left|S_{11}\right|^{2} P_{1}^{+}+\left|S_{21}\right|^{2} P_{1}^{+}+\left|S_{31}\right|^{2} P_{1}^{+}
$$

$$
\Rightarrow P^{-}=\left(\left|S_{11}\right|^{2}+\left|S_{21}\right|^{2}+\left|S_{31}\right|^{2}\right) P_{1}^{+}
$$

- Since this device is lossless, then the incident power (only on port 1) is equal to exiting $\left|S_{11}\right|^{2}+\left|S_{21}\right|^{2}+\left|S_{31}\right|^{2}=1$ power (i.e, $\mathrm{P}^{-}=\mathrm{P}_{1}^{+}$). This is true only if:
- Of course, this will be true if the incident wave is placed on any of the other ports of this lossless device:

$$
\left(\begin{array}{l}
\left|S_{12}\right|^{2}+\left|S_{22}\right|^{2}+\left|S_{32}\right|^{2}=1 \\
\left|S_{13}\right|^{2}+\left|S_{23}\right|^{2}+\left|S_{33}\right|^{2}=1
\end{array}\right.
$$

Matched, Lossless, Reciprocal Devices (contd.)

- We can state in general then that: $\sum_{m=1}^{N}\left|S_{m n}\right|^{2}=1 \quad$ For all n
- In other words, the columns of the scattering matrix must have unit magnitude (a requirement of all unitary matrices). It is apparent that this must be true for energy to be conserved.
- An example of a (unitary) scattering matrix for a 4-port $S=$ lossless device is:

$$
\boldsymbol{S}=\left[\begin{array}{cccc}
0 & 1 / 2 & j \sqrt{3} / 2 & 0 \\
1 / 2 & 0 & 0 & j \sqrt{3} / 2 \\
j \sqrt{3} / 2 & 0 & 0 & 1 / 2 \\
0 & j \sqrt{3} / 2 & 1 / 2 & 0
\end{array}\right]
$$

Reciprocal Device

- Recall reciprocity results when we build a passive (i.e., unpowered) device with simple materials.
- For a reciprocal network, we find that the elements of the scattering matrix are related as:

$$
S_{n n}=S_{n n}
$$

Matched, Lossless, Reciprocal Devices (contd.)

- For example, a reciprocal device will have $S_{21}=S_{12}$ or $S_{32}=S_{23}$. We can write reciprocity in matrix form as:

$$
S^{T}=S \quad \text { where } \mathrm{T} \text { indicates transpose. }
$$

- An example of a scattering matrix describing a reciprocal, but lossy and non-matched device is:

$$
\boldsymbol{S}=\left[\begin{array}{cccc}
0.10 & -0.40 & -j 0.20 & 0.05 \\
-0.40 & j 0.20 & 0 & j 0.10 \\
-j 0.20 & 0 & 0.10-j 0.30 & -0.12 \\
0.05 & j 0.10 & -0.12 & 0
\end{array}\right]
$$

Example - 3

- A lossless, reciprocal 3-port device has S-parameters of $S_{11}=1 / 2, S_{31}=$ $1 / \sqrt{2}^{2}$, and $S_{33}=0$. It is likewise known that all scattering parameters are real.
\rightarrow Find the remaining 6 scattering parameters.

Q: This problem is clearly impossible-you
have not provided us with sufficient information!

A: Yes I have! Note I said the device was lossless and reciprocal!

Example - 3 (contd.)

- Start with what we currently know:

$$
\mathbf{S}=\left[\begin{array}{ccc}
1 / 2 & S_{12} & S_{13} \\
S_{21} & S_{22} & S_{23} \\
1 / \sqrt{2} & S_{32} & 0
\end{array}\right]
$$

- As the device is reciprocal, we then also know:

$$
S_{12}=S_{21} \quad S_{13}=S_{31}=1 / \sqrt{ } 2 \quad S_{32}=S_{23}
$$

- And therefore:

$$
\mathbf{S}=\left[\begin{array}{ccc}
1 / 2 & S_{21} & 1 / \sqrt{ } 2 \\
S_{21} & S_{22} & S_{32} \\
1 / \sqrt{2} & S_{32} & 0
\end{array}\right]
$$

- Now, since the device is lossless, we know that:

$$
\left|S_{11}\right|^{2}+\left|S_{21}\right|^{2}+\left|S_{31}\right|^{2}=1
$$

$$
(1 / 2)^{2}+\left|S_{21}\right|^{2}+(1 / \sqrt{2})^{2}=1
$$

$$
\left|S_{12}\right|^{2}+\left|S_{22}\right|^{2}+\left|S_{32}\right|^{2}=1
$$

$$
\left|S_{21}\right|^{2}+\left|S_{22}\right|^{2}+\left|S_{32}\right|^{2}=1
$$

$$
\left|S_{13}\right|^{2}+\left|S_{23}\right|^{2}+\left|S_{33}\right|^{2}=1
$$

$$
(1 / 2)^{2}+\left|S_{32}\right|^{2}+(1 / \sqrt{2})^{2}=1
$$

Columns have unit magnitude

Example - 3 (contd.)

$$
\begin{aligned}
& 0=S_{11} S_{12}^{*}+S_{21} S_{22}^{*}+S_{31} S_{32}^{*}=\frac{1}{2} S_{12}^{*}+S_{21} S_{22}^{*}+\frac{1}{\sqrt{2}} S_{32}^{*} \\
& 0=S_{11} S_{13}^{*}+S_{21} S_{23}^{*}+S_{31} S_{33}^{*}=\frac{1}{2} \frac{1}{\sqrt{2}}+S_{21} S_{32}^{*}+\frac{1}{\sqrt{2}}(0) \\
& 0=S_{12} S_{13}^{*}+S_{22} S_{23}^{*}+S_{32} S_{33}^{*}=S_{21}\left(\frac{1}{\sqrt{2}}\right)+S_{22} S_{32}^{*}+S_{32}(0)
\end{aligned}
$$

We can simplify these expressions and can further simplify them by using the fact that the elements are all real, and therefore $S_{21}=S_{21}{ }^{*}$ (etc.).

Q: I count the simplified expressions and find 6 equations yet only a paltry 3 unknowns. Your typical buffoonery appears to have led to an over-constrained condition for which there is no solution!

Example - 3 (contd.)

A: Actually, we have six real equations and six real unknowns, since scattering element has a magnitude and phase. In this case we know the values are real, and thus the phase is either 0° or $180^{\circ}\left(\right.$ i.e., $e^{j 0}=1$ or $e^{j \pi}=$ - 1); however, we do not know which one!

- the scattering matrix for the given lossless, reciprocal device is:

$$
\mathbf{S}=\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & 1 / \sqrt{2} \\
1 / 2 & 1 / 2 & -1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2} 2 & 0
\end{array}\right]
$$

