

<u>Lecture – 21</u>

Date: 07.11.2016

• Fourier Transform Applications

Circuit Applications

 Many circuits are driven by non-sinusoidal periodic functions. To find the steady-state response of a circuit to a non-sinusoidal periodic excitation requires the application of a Fourier series, ac phasor analysis, and the superposition principle. The procedure usually involves four steps.

Steps for Applying Fourier Series:

- 1. Express the excitation as a Fourier series.
- 2. Transform the circuit from the time domain to the frequency domain.
- 3. Find the response of the dc and ac components in the Fourier series.
- 4. Add the individual dc and ac responses using the superposition principle.

Circuit Applications (contd.)

• **First Step:** determine the Fourier series expansion of the excitation.

ECE215

Third Step: find the response to each term in the Fourier series.

Circuit Applications (contd.)

- The response to the **dc component** can be determined in the frequency domain by setting n = 0 or $\omega = 0$, or in the time domain by replacing all inductors with short circuits and all capacitors with open circuits.
- The response to the ac component is obtained by applying the phasor techniques.

The network is represented by its impedance $\mathbf{Z}(n\omega_0)$ and it's the value when ω is everywhere replaced by $n\omega_0$

i(

Circuit Applications (contd.)

• **Step-4:** apply principle of superposition to obtain the total current.

$$t) = i_0(t) + i_1(t) + i_2(t) + \cdots$$

= $\mathbf{I}_0 + \sum_{n=1}^{\infty} |\mathbf{I}_n| \cos(n\omega_0 t + \psi_n)$

where each component I_n with frequency $n\omega_0$ has been transformed to the time domain to get $i_n(t)$, and Ψ_n is the argument of I_n .

Example – 1

In this situation, f(t) is the voltage source $v_s(t)$. Find the response of the circuit.

ECE215

Average Power and RMS Power

• the periodic current and voltage in amplitude-phase form:

$$i(t) = I_{dc} + \sum_{m=1}^{\infty} I_m \cos(m\omega_0 t - \phi_m)$$
$$v(t) = V_{dc} + \sum_{n=1}^{\infty} V_n \cos(n\omega_0 t - \theta_n)$$

• the average power: $P = \frac{1}{T} \int_0^T v i \, dt$

$$P = \frac{1}{T} \int_{0}^{T} V_{dc} I_{dc} dt + \sum_{m=1}^{\infty} \frac{I_m V_{dc}}{T} \int_{0}^{T} \cos(m\omega_0 t - \phi_m) dt + \sum_{n=1}^{\infty} \frac{V_n I_{dc}}{T} \int_{0}^{T} \cos(n\omega_0 t - \theta_n) dt + \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{V_n I_m}{T} \int_{0}^{T} \cos(n\omega_0 t - \theta_n) \cos(m\omega_0 t - \phi_m) dt$$

Here, the second and third integrals vanish, due to the integration of the cosine over its period. All terms in the fourth integral are zero when $n \neq m$.

Average Power and RMS Power (contd.)

• For
$$m = n$$
: $P = V_{dc}I_{dc} + \frac{1}{2}\sum_{n=1}^{\infty} V_n I_n \cos(\theta_n - \phi_n)$

the total average power is the sum of the average powers in each harmonically related voltage and current.

• For a periodic function f(t), its rms value (or the effective value) is:

$$F_{\rm rms} = \sqrt{\frac{1}{T}} \int_0^T f^2(t) dt$$

$$F_{\rm rms} = \sqrt{a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)}$$

• If f(t) is the current through a resistor *R*, then:

$$P = RF_{\rm rms}^2$$

Average Power and RMS Power (contd.)

• If f(t) is the voltage across a resistor R, then:

$$P = \frac{F_{\rm rms}^2}{R}$$

• The power dissipated by the 1Ω resistance is:

$$P_{1\Omega} = F_{\rm rms}^2 = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$

- This result is known as *Parseval's theorem*.
- Notice that $(a_0)^2$ is the power in the dc component, while $\frac{1}{2}[(a_n)^2+(b_n)^2]$ is the ac power in the *n*th harmonic.
- Thus, Parseval's theorem states that the average power in a periodic signal is the sum of the average power in its dc component and the average powers in its harmonics.

Example – 2

• Determine the average power supplied to this circuit if $i(t) = 2 + 10\cos(t + 10^\circ) + 6\cos(3t + 35^\circ)A$

