Passive and Active Filters

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY DELHI

Passive Filters

- Consists of passive elements like:
 - Resistor,
 - Capacitor and
 - Inductor
- Filters can be classified as :-
 - 1. Low Pass Filter
 - 2. High Pass Filter
 - 3. Band Pass Filter
 - 4. Band Stop Filter (Band Reject/Eliminate Filter)

Passive Low Pass Filter (LPF)

- LPF ideally allows lower frequencies and attenuates higher frequencies.
- One of the simplest form of LPF
 - Transfer Function:

$$\mathbf{H}(\boldsymbol{\omega}) = \frac{\mathbf{V}_o}{\mathbf{V}_i} = \frac{1/j\boldsymbol{\omega}C}{R+1/j\boldsymbol{\omega}C}$$
$$\mathbf{H}(\boldsymbol{\omega}) = \frac{1}{1+j\boldsymbol{\omega}RC}$$

• H(0) = 1 and $H(\infty) = 0 \Rightarrow$ Filter is LFP

Passive Low Pass Filter (LPF)

- ω_c is the cut-off frequency.
 - It is a frequency at which $|H(\omega)|$ drops to 70.07% of $|H(\omega)|_{max}$ or becomes $\frac{1}{\sqrt{2}}$ of $|H(\omega)|_{max}$.
- So, here, ω_c can be calculated as:

$$H(\omega_c) = \frac{1}{\sqrt{1 + \omega_c^2 R^2 C^2}} = \frac{1}{\sqrt{2}}$$
$$\omega_c = \frac{1}{RC}$$

Passive High Pass Filter (HPF)

- Ideally, HPF attenuates lower frequencies and allows higher frequencies.
- One of the simplest form of HPF
 - Transfer Function: $\mathbf{H}(\omega) = \frac{\mathbf{V}_o}{\mathbf{V}_i} = \frac{R}{R + 1/i\omega C}$

$$\mathbf{H}(\boldsymbol{\omega}) = \frac{j\boldsymbol{\omega}RC}{1 + j\boldsymbol{\omega}RC}$$

• H(0) = 0 and $H(\infty) = 1 \Rightarrow$ Filter is HFP

$$\omega_c = \frac{1}{RC}$$

Passive Band Pass Filter (BPF)

- BPF allows frequencies of a particular range and eliminates other frequencies.
- Typical example of BPF
- Transfer function :

$$\mathbf{H}(\omega) = \frac{\mathbf{V}_o}{\mathbf{V}_i} = \frac{R}{R + j(\omega L - 1/\omega C)}$$

- Here, H(0) = 0 and $H(\infty) = 0$
- How it is BPF ?
- Resonance Frequency, ω_0 !!!!!
- $Z_{eq} = R \Rightarrow$ Filter allows ω_0 means it is a BPF

Passive Band Pass Filter (BPF)

• Here, ω_1 and ω_2 are half power frequencies i.e. power dissipated is half of the maximum power.

$$\omega_1 = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}$$
$$\omega_2 = \frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}$$

- Bandwidth of BPF = ω_2 ω_1
- Quality Factor,

$$Q = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 CR}$$

Where
$$\omega_0 = \frac{1}{\sqrt{LC}} = \sqrt{\omega_1 \omega_1}$$

Passive Band Stop Filter

- It rejects a particular range of frequencies and allows rest of the frequencies.
- Example of band stop filter :
 - Transfer Function

$$\mathbb{H}(\omega) = \frac{\mathbb{V}_o}{\mathbb{V}_i} = \frac{j(\omega L - 1/\omega C)}{R + j(\omega L - 1/\omega C)}$$

- Here, H(0) = 1 and $H(\infty) = 1$.
- But at resonance frequency,

 $v_0 = 0 \Rightarrow$ Filters does not allow ω_0

Practice Problem

1. Obtain the transfer function. Identify the type of filter the circuit represents and determine the corner frequency.

Take $R_1 = 100 \ \Omega = R_2$, L = 2 mH.

Practice Problem

2. Design a bandpass filter of the following form with a lower cutoff frequency of 20.1 kHz and an upper cutoff frequency of 20.3 kHz. Calculate *L*, *C*, and *Q*. Take $R = 20 \text{ k}\Omega$.

