Lecture - 13

Date: 26.09.2016

- Transformer

ECE215

Transformer

A transformer is generally a four-terminal device comprising two (or more) magnetically coupled coils.

- The resistances R_{1} and R_{2} account for the losses (power dissipation) in the coils.
- The transformer is linear if the coils are wound on a magnetically linear material-a material for which the magnetic permeability is constant. Such materials include air, plastic, Bakelite, and wood.
- In fact, most materials are magnetically linear.

A linear transformer may also be regarded as one whose flux is proportional to the currents in its windings.

Linear transformers are sometimes called air-core transformers, although not all of them are necessarily air-core.

ECE215

Transformer (contd.)

$$
\begin{gathered}
\mathbf{V}=\left(R_{1}+j \omega L_{1}\right) \mathbf{I}_{1}-j \omega M \mathbf{I}_{2} \\
0=-j \omega M \mathbf{I}_{1}+\left(R_{2}+j \omega L_{2}+\mathbf{Z}_{L}\right) \mathbf{I}_{2}
\end{gathered}
$$

Primary coil
Secondary coil

- the input impedance $\boldsymbol{Z}_{\text {in }}$ as seen from the source:
$\mathbf{Z}_{\text {in }}=\frac{\mathbf{V}}{\mathbf{I}_{1}}=R_{R_{1}+j \omega L_{L}}+\frac{\omega^{2} M^{2}}{R_{2}+j \omega L_{2}+\mathbf{Z}_{L}}$
primary impedance due to the coupling between the primary It is as though this impedance is reflected to the primary and is called reflected impedance $\boldsymbol{Z}_{\boldsymbol{R}}$

$$
\mathbf{Z}_{R}=\frac{\omega^{2} M^{2}}{R_{2}+j \omega L_{2}+\mathbf{Z}_{L}}
$$

Not affected by the location of the dots on the transformer

ECE215

Transformer (contd.)

- it is sometimes convenient to replace a magnetically coupled circuit by an equivalent circuit with no magnetic coupling.

$$
\begin{gathered}
{\left[\begin{array}{l}
\mathbf{V}_{1} \\
\mathbf{V}_{2}
\end{array}\right]=\left[\begin{array}{ll}
j \omega L_{1} & j \omega M \\
j \omega M & j \omega L_{2}
\end{array}\right]\left[\begin{array}{l}
\mathbf{I}_{1} \\
\mathbf{I}_{2}
\end{array}\right] \text { Inversion }} \\
{\left[\begin{array}{l}
\mathbf{I}_{1} \\
\mathbf{I}_{2}
\end{array}\right]=\left[\begin{array}{ll}
\frac{-M}{j \omega\left(L_{1} L_{2}-M^{2}\right)} & \frac{-M}{j \omega\left(L_{1} L_{2}-M^{2}\right)} \\
\frac{-M}{j \omega\left(L_{1} L_{2}-M^{2}\right)} & \frac{L_{1}}{j \omega\left(L_{1} L_{2}-M^{2}\right)}
\end{array}\right]\left[\begin{array}{l}
\mathbf{V}_{1} \\
\mathbf{V}_{2}
\end{array}\right]}
\end{gathered}
$$

For a T-Network

ECE215

Transformer (contd.)

- For the T-model to be equivalent to the linear transformer:

$$
L_{a}=L_{1}-M, \quad L_{b}=L_{2}-M, \quad L_{c}=M
$$

For a π-Network

- For the π-model to be equivalent to the linear transformer:

$$
L_{A}=\frac{L_{1} L_{2}-M^{2}}{L_{2}-M}, \quad L_{B}=\frac{L_{1} L_{2}-M^{2}}{L_{1}-M} \quad L_{C}=\frac{L_{1} L_{2}-M^{2}}{M}
$$

In the T- and π - Models, the inductors are not magnetically coupled

ECE215

Example-1

(a) Find the input impedance of the circuit using the concept of reflected impedance.
(b) Obtain the input impedance by replacing the linear transformer by its T equivalent.

Example - 2

Find:
(a) the T-equivalent circuit,
(b) the π-equivalent circuit.

ECE215

Example - 3

Two linear transformers are cascaded as shown below. Show:

$$
\mathbf{Z}_{\mathrm{in}}=\frac{\omega^{2} R\left(L_{a}^{2}+L_{a} L_{b}-M_{a}^{2}\right.}{+j \omega^{3}\left(L_{a}^{2} L_{b}+L_{a} L_{b}^{2}-L_{a} M_{b}^{2}-L_{b} M_{a}^{2}\right.} \begin{array}{|c}
\omega^{2}\left(L_{a} L_{b}+L_{b}^{2}-M_{b}^{2}\right)-j \omega R\left(L_{a}+L_{b}\right)
\end{array}
$$

