

<u>Lecture – 9</u>

Date: 08.09.2016

- Non-idealities in Current Mirror
- Cascode Current Mirror
- Current Mirror Configurations
- Examples

Current Mirror

• Now let us take the generic equations for the following current mirror:

Even if these transistors are identical and have been fabricated on the same chip [thus practically possessing similar parameters such as V_T, μ_n, C_{ox}], there are three effects that causes current mirror to be different from ideal situation

These effects are: (a) Channel Length Modulation, (b) V_T offset between the two transistors, (c) Imperfect Geometrical Matching

Channel Length Modulation Effect

 Assuming all other aspects of the transistor are ideal and the <u>ratio</u> of aspect ratios of both the transistors are unity then:

Channel Length Modulation Effect (contd.)

Channel Length Modulation Effect (contd.)

- Therefore, the apparent solution seems the use of long channel device
 - however this also requires increase in width → results in problems for area and power constraint designs
 - furthermore, increase in width also increases the output capacitance
 → high frequency performance suffers
 - short channel devices are commonplace and therefore this solution is not appropriate

Cascode Current Mirror

 In order to overcome the error due to channel length modulation, instead of a simple two transistor "current mirror" it is recommended to use "cascode current mirror"

- In this architecture, small changes in potential at node-P does not have any
 ✓ effect on the potential at node-Y → shielding property of Cascode.
 - Through some technique make $V_Y = V_X$ \rightarrow then the effect of channel length modulation is insignificant as the mirror equation becomes:

 $I_{out} = I_{REF}$

Once again only dependent on the scaling of devices

Cascode Current Mirror (contd.)

- How do we generate the condition: $V_{y} = V_{x}$
- For this to happen, we must guarantee V_b − V_{GS3} = V_X → It means one gate-source voltage should be added to achieve this → this is easily achieved by placing a diode-connected device M₀ in series with M₁

Cascode Current Mirror (contd.) סס VDD $V_N = V_{GS0} + V_X$ 1 REF)/_{REF} M₀ The node N is then Ν Mo connected to the gate X $V_{\rm GS0} + V_{\rm X}$ of cascode device M_{2} $V_{GS0} + V_X + V_{GS1} = V_{GS3} + V_Y + V_{GS2}$ $\therefore V_{GS0} + V_X = V_{GS3} + V_Y$

proper choice of dimensions of M_0 and M_3 yields $V_{GS0} = V_{GS3}$

• For this to happen:

$$\frac{(W / L)_3}{(W / L)_0} = \frac{(W / L)_2}{(W / L)_1}$$

• Once $V_{GS0} = V_{GS3}$, we get: $V_X = V_Y$

Cascode Current Mirror (contd.)

• $V_X = V_Y$ leads to the condition: $V_{DS1} = V_{DS2} \rightarrow$ transforms the $I_{out} = I_{REF} \frac{(W/L)_2}{(W/L)_1}$ mirror equation:

Valid even when there exist body effect in transistors M₀ and M₃

- Cascode configuration improves the accuracy of current copying capability
 → but what is the major drawback?
- As the cascode current mirror provides a constant current source, it should also possess very high output impedance
 - Consider once again the following configuration:

Cascode Current Mirror (contd.)

Accuracy and Voltage Swing Trade-off

Current Mirror (contd.)

Threshold Offset Effect

- The offset between the threshold voltage of two transistors also causes problems in the optimal operation of current mirror
- The threshold offset is typically less than 10mV for identical transistors → even this small offset causes substantial error!!!
- Let us now consider a current mirror configuration where both have the same V_{DS} and all other aspects of the transistors are equal except V_T. The expression simplifies to:

$$\frac{I_{out}}{I_{REF}} = \left(\frac{V_{GS} - V_{T2}}{V_{GS} - V_{T1}}\right)^2$$

Current Mirror (contd.)

Threshold Offset Effect (contd.)

• The plot of ratio error between ideal and imperfect current mirroring as a function of $\Delta V_T = V_{T1} - V_{T2}$ results into:

Current Mirror (contd.)

Threshold Offset Effect (contd.)

- Sometimes it may happen that the factor $\mu_n C_{ox}$ (let us call it K') is also mismatched alongwith the offset in the threshold.
- The current mirror equation then transforms to:

$$\frac{I_{out}}{I_{REF}} = \frac{K_{2}'(V_{GS} - V_{T2})^{2}}{K_{1}'(V_{GS} - V_{T1})^{2}}$$

In this case its assumed that the aspect ratio is identical (considering that its designer driven!).

• Let us define:

$$\Delta K' = K_{2}' - K_{1}' \qquad K' = \frac{1}{2} \left(K_{2}' + K_{1}' \right) \qquad V_{T} = \frac{1}{2} \left(V_{T1} + V_{T2} \right)$$

Then:

 $K_{1} = K' - 0.5\Delta K'$ $K_{2} = K' + 0.5\Delta K'$ $V_{T1} = V_{T} - 0.5\Delta V_{T}$ $V_{T2} = V_{T} + 0.5\Delta V_{T}$

Current Mirror (contd.)

Threshold Offset Effect (contd.)

• Let us substitute the mirror equation using these assumed parameters:

$$\frac{I_{out}}{I_{REF}} = \frac{\left(K' + 0.5\Delta K'\right)\left(V_{GS} - V_T - 0.5\Delta V_T\right)^2}{\left(K' - 0.5\Delta K'\right)\left(V_{GS} - V_T + 0.5\Delta V_T\right)^2}$$

Assuming these quantities to be small, we get:

$$\left(\frac{I_{out}}{I_{REF}} = \left(1 + \frac{\Delta K'}{2K'}\right) \left(1 + \frac{\Delta K'}{2K'}\right) \left(1 - \frac{\Delta V_T}{2(V_{GS} - V_T)}\right)^2 \left(1 - \frac{\Delta V_T}{2(V_{GS} - V_T)}\right)^2\right)$$

Threshold Offset Effect (contd.)

• Retaining only the first order products gives:

If the percentage change of K' and V_T are known apriori, then this expression can predict the worst-case error in the current mirroring capability of the current mirror

$$\frac{I_{out}}{I_{REF}} \cong 1 + \frac{\Delta K'}{K'} - \frac{2\Delta V_T}{V_{GS} - V_T}$$

e of K'
i, then
ict the
urrent
the

$$\frac{\Delta V_T}{V_{GS} - V_T} = \pm 10\%$$

then:

$$\frac{I_{out}}{I_{REF}} \cong 1 \pm 0.05 \pm (-0.2) = 1 \pm (-0.15)$$

In this example, the maximum error amounts to 15% provided the tolerances in K' and V_T are correlated

Mismatch in Aspect Ratio

- mismatches are commonly present even in identical transistors on the same die ← W and L are often mismatched due to mask, photolithography, and diffusion variations → this can be significant even for two transistors placed side by side
- One way to overcome these effects is to make transistors much larger than these variations \rightarrow e.g., for transistors of identical size with W and L greater than $10\mu m$, the errors due to the mismatched aspect ratio will be insignificant \leftarrow when compared to errors contributed by offset V_T and Channel Length Modulation
- However, many applications (for high current gain applications!) require aspect ratio of transistor (M₂) to be much larger than the aspect ratio of the reference transistor (M₁) ← necessitates creativity in layout techniques !!!

Mismatch in Aspect Ratio (contd.)

• Example: we see layout of one-to-four current amplifier below. Its assumed that the lengths are identical $(L_1 = L_2)$. Find the ratio error if:

Current Mirror (contd.)

Mismatch in Aspect Ratio (contd.)

- For large W, it's a good strategy to have W not much larger than L and to put equal transistors in parallel.
- A solution to this problem is to use appropriate layout technique. For example, use four duplicates of transistor M₁ to achieve one-to-four ratio. This way the tolerance on W₂ is multiplied by the nominal current gain.

Here its assumed that ΔW should be the same for all the transistors

Current Mirror Configurations

- It is a common practice to design current mirror circuits for high output impedance [for achieving near ideal current source!]
- No less important is the voltage headroom [specially for low voltage applications!!!]

Current Mirror Configurations (contd.)

Current Mirror Configurations (contd.)

Current Mirror Configurations (contd.)

<u>Multiple Cascode</u>

Current Mirror Configurations (contd.)

Configurations	Current Ratio	Output Swing	Output Impedance $\frac{1}{g_m} \parallel r_o$	
Simple	$\frac{1 + \lambda V_{DS2}}{1 + \lambda V_{DS1}}$	V_{DSsat}		
Cascode	1	$2V_{DSsat} + V_T$	$r_o^2 \cdot g_m$	
Triple Cascode	1	$3V_{DSsat} + 2V_T$	$r_{o}^{3}.g_{m}^{2}$	
Wilson	$\frac{1 + \lambda V_{DS2}}{1 + \lambda V_{DS1}}$	$2V_{DSsat} + V_T$	$r_o^2 \cdot g_m$	
Improved Wilson	1	$2V_{DSsat} + V_T$	$r_o^2 \cdot g_m$	

Following figure illustrates a source-degenerated current source. Calculate the output resistance at the given bias current by using the following model parameter: $\mu_n C_{ox} = 110 \ \mu A/V^2$, $\lambda = 0.04 \ (L=1 \ \mu m)$ or 0.01 (L= 2 μ m) /V, 2| ϕ_F |=0.7, Y=0.4 V^{1/2}

Example-1 (contd.)

The dc terminal conditions are:

$$I_D = 10 \mu A$$
 $V_S = I_D * R = 10 * 10^{-6} \times 100 * 10^3 = 1V$ $V_{SB} = V_S$

Now the small signal model of the circuit is:

Example-1 (contd.)

The device parameters can be computed as:

$$g_{mbs} = g \frac{\gamma}{2(2|\phi_F|+V_{SB})^{1/2}} \implies g_{mbs} = 66.3 \times 10^{-6} \frac{0.4}{2(0.7+1)^{1/2}} \implies \therefore g_{mbs} = 10.17 \times 10^{-6}$$

$$r_o = \frac{1}{\lambda I_D}$$
 $r_o = \frac{1}{0.04 \times 10^{-6}}$ $r_o = 2.5 \times 10^6 \Omega$

Thus: $r_{out} = 100 * 10^3 + 2.5 * 10^6 + \left[\left(66.6 * 10^{-6} + 10.17 * 10^{-6} \right) 2.5 * 10^6 \right] 100 * 10^3 = 21.7 * 10^6 \Omega$

The approximated: $r_{out} = 66.6 \times 10^{-6} \times 2.5 \times 10^{6} \times 100 \times 10^{3} = 16.65 \times 10^{6} \Omega$

Calculate the minimum output voltage required to keep device in saturation in example-1. The model parameters: $\mu_n C_{ox} = 110 \ \mu A/V^2$, $\lambda = 0.04 \ (L=1 \ \mu m)$ or 0.01 (L= 2 μ m) /V, 2| ϕ_F |=0.7, Y=0.4 V^{1/2}

$$V_D(\min) = V_S + (V_{GS} - V_T)(\min) = 1 + 0.302 = 1.302V$$

Using the Cascode circuit shown below, design the W/L of M1 to achieve the same output resistance as the circuit in example-1. Ignore body effect.

Now calculate the minimum output voltage required to keep the devices in saturation in example-3.

The minimum output voltage for circuit in example-1 is lower than the minimum output voltage for circuit in example-3, therefore is a better choice for low voltage applications

Calculate the output resistance, while maintaining all the devices in saturation, for the circuit given below. Assume that I_{out} is actually 10µA. Ignore body effect.

Example-5 (contd.)

$$\therefore r_{out} = 2.5 * 10^6 + 2.5 * 10^6 + \left[104.9 * 10^{-6} \times 2.5 * 10^6\right] 2.5 * 10^6 \approx 661 * 10^6 \Omega$$

Consider the simple current mirror given below.

Assuming that the drain voltages are identical, what is the minimum and maximum output current measured over the process variations given above. The model parameters: $\mu_n C_{ox} = 110 \ \mu A/V^2$, $\lambda = 0.04 \ (L=1 \ \mu m)$ or 0.01 (L= 2 μ m) /V, 2| ϕ_F |=0.7, Y=0.4 V^{1/2}

Example-6 (contd.) We know: $I_D = \frac{1}{2} (U_n C_{ox} \frac{W}{L} (V_{GS} - V_T)^2)$ K $\Rightarrow V_{GS} = \sqrt{\frac{2I_D}{K(\frac{W}{L})}} + V_T$ • Assuming equal V_{GS} for both the transistors, we can express $i_o = \frac{1}{2} K_2 \left(\frac{W}{L}\right)_2 \left(\sqrt{\frac{2 \times I_{\text{Re}f}}{K_1(\frac{W}{L})}} + V_{T1} - V_{T2}\right)^2$

 We can deduce from this equation that the minimum and maximum of output current will happen under respective following conditions.

	K ₁	K ₂	(W/L) ₁	(W/L) ₂	V _{T1}	V _{T2}
i _o (min)	Max	Min	Max	Min	Min	Max
i _o (max)	Min	Max	Min	Max	Max	Min