

<u>Lecture – 5</u>

Date: 18.08.2016

- Common Source Amplifier
- MOSFET Amplifier Distortion

Example – 1

Example – 1 (contd.)

 $\begin{array}{lll} \underline{\text{Usually, } \textbf{R}_{\underline{G}} \text{ is very high (of the} \\ \text{order of M\Omega) and therefore:} \end{array} \quad v_{i} \cong v_{sig} \\ \underline{\text{Now, }} \quad v_{gs} = v_{i} \end{array} \qquad \Rightarrow v_{o} = -g_{m}v_{gs}\left(r_{o} \parallel R_{D} \parallel R_{L}\right) \\ \hline{\therefore } A_{v} = \frac{v_{o}}{v_{in}} = \frac{v_{o}}{v_{gs}} = -g_{m}\left(r_{o} \parallel R_{D} \parallel R_{L}\right) \end{array}$

Open Loop Voltage Gain (ie, when there is no feedback loop from o/p to the i/p): $A_{vo} = -g_m(r_o \parallel R_D)$

<u>The overall voltage gain from the signal-source to the</u> $G_v = -\frac{R_G}{R_G + R_{sig}} g_m(r_o || R_D || R_L)$ <u>load is:</u>

For the determination of R_{out} , the signal v_{sig} has to be set to zero (replace the signal generator with a short circuit) \rightarrow simple inspection gives:

 $R_{out} = \left(r_o \parallel R_D\right)$

MOSFET Amplifier Distortion

Lets look at the last example. You needed to perform a small-signal analysis to determine the small-signal open-circuit voltage gain $A_v = \frac{v_o(t)}{v_i(t)}$

We found that the small-signal voltage gain is:

$$A_{vo}=\frac{v_o(t)}{v_i(t)}=-5.0$$

• Say the **input** voltage to this $v_i(t) = V_i \cos \omega t$ amplifier

 $=-5.0V_i \cos \omega t$

 $v_o(t) = A_{v_o} v_i(t)$

Q: What is the **largest** value that V_i can take without producing a **distorted** output?

A: Well, we know that the **small-signal output** is:

BUT, this is **not** the output voltage!

→ The total output voltage is the sum of the small-signal output voltage and the DC output voltage!

- Note for this example, the **DC output** voltage is the **DC drain** voltage, and that its value is: $V_O = V_D = 10 \text{ V}$
 - Thus, the total output voltage is : $v_O(t) = V_D + v_o(t) = 10.0 5.0 V_i \cos \omega t$

It is very important that you realize there is a **limit** on both how high and how low the **total** output voltage $v_0(t)$ can go.

That's right! If the **total** output voltage $v_0(t)$ tries to exceed these limits—even for a moment—the MOSFET will leave **saturation** mode.

And leaving saturation mode results in signal distortion!

• Let's break the problem down into **two** separate problems:

1) If total output voltage $v_0(t)$ becomes too small, the MOSFET will enter the triode mode

2) If total output voltage $v_0(t)$ becomes too large, the MOSFET will enter the cutoff mode

We'll first consider **problem 1**.

- For a MOSFET to remain in saturation, $v_{DS}(t)$ must remain greater than the excess gate voltage $V_{GS} V_T$ all the time t.
- Since the source terminal of the MOSFET in **this** circuit is $v_{DS}(t)$ connected to ground, we know that $V_S = 0$. Therefore:
- And so the MOSFET will remain in saturation **only** if the total output voltage remains **larger** than $V_{GS} V_T = V_G V_T$.
- Thus, we conclude for this amplifier that the output "floor" is:

$$V_{DS}(t) > V_{GS} - V_{T}$$

 $egin{aligned} & v_{DS}(t) = v_D(t) = v_O(t) \ & V_{GS} = V_G \end{aligned}$

$$V_{O}(t) > V_{GS} - V_{T}$$

 $v_{\rm DS}(t) > V_{\rm GS} - V_{\rm T}$

- Here, $V_{GS} = 4.0 V$ and $V_T = 2.0 V$. Therefore:
- Thus, to remain in saturation, the **total** output voltage must remain larger than the "floor" voltage at all time t. $v_o(t) > L_{-} = 2.0 V$
- Since this total voltage is: $v_O(t) = 10.0 5.0 V_i \cos \omega t$
- we can determine the maximum value of small-signal input magnitude:

$$10.0 - 5.0 V_i \cos \omega t > 2.0$$

 \Rightarrow 8.0 > 5.0 V_i coswt

 \Rightarrow V_i coswt < 1.6

 Since cosωt can be as large as 1.0, we find that the magnitude of the input voltage can be no larger than 1.6 V, i.e.,

$$V_i < 1.6 V$$

 $L_{-} = V_{G} - V_{+} = 4 - 2 = 2.0 V$

If the **input** magnitude exceeds this value, the MOSFET will (momentarily) leave the saturation region and enter the dreaded **triode** mode!

MOSFET Amplifier Distortion (contd.)

Now let's consider **problem 2**

- For the MOSFET to remain in saturation, the **drain** current must be **greater** than zero $(i_D > 0)$. Otherwise, the MOSFET will enter **cutoff** mode.
- Applying **Ohm's Law** to the drain resistor, we find the **drain current** is:
- it is evident that drain current is **positive** only if:
- In other words, the **upper** limit (i.e., the "ceiling") on the **total** output voltage is:
- Since this total voltage is: $v_{O}(t) = 10.0 5.0V_{i} cos \omega t$
- we can conclude that in order for the MOSFET $10.0 - 5.0 V_i cos \omega t > 15.0$ to remain in **saturation** mode:
- $V_i cos \omega t > \frac{-5.0}{5.0} = -1.0$ Therefore, we find:
- Since $cos\omega t$ can be as large as 1.0, we find that the **magnitude** of the **input** voltage can be **no larger** than:

$$i_{\mathcal{D}} = \frac{V_{\mathcal{D}\mathcal{D}} - v_{\mathcal{O}}}{R_{\mathcal{C}}} = \frac{15 - v_{\mathcal{O}}}{5}$$

 $v_{O} < 15 \text{ V}$

$$L_{+} = V_{DD} = 15.0 V$$

 $V_i < 1.0 V$

If the input magnitude exceeds 1.0 V, the MOSFET will (momentarily) leave the saturation and enter the cutoff region!

In summary:

1) If, $V_i > 1.6 V$, the MOSFET will at times enter **triode**, and **distortion** will occur! 2) If, $V_i > 1.0 V$, the MOSFET will at times enter **cutoff**, and **even more** distortion will occur!

• To demonstrate this, let's consider three examples:

1. $V_i < 1.0 V$

• The output signal in this case remains between $V_{DD} = 15.0V$ $V_o = 10$ and $V_G - V_T = 2.0 V$ for all time t. Therefore, the output signal is **not distorted**.

MOSFET Amplifier Distortion (contd.)

2. 1.6 V > V_i > 1.0 V

• The output signal in this case remains greater than $L_{-} = V_{G} - V_{T} = 2$ for all time t. However, the small-signal output is now large enough so that the total output voltage at times tries to **exceed** $L_{+} = V_{DD} = 15$. For these times, the MOSFET will enter **cutoff**, and the output signal will be **distorted**.

MOSFET Amplifier Distortion (contd.)

- 3. $V_i > 1.6 V$
- In this case, the small-signal input signal is sufficiently **large** so that the total output will attempt to exceed **both** limits (i.e., $V_{DD} = 15.0 V$ and $V_G V_T = 2.0 V$). Therefore, there are periods of time when the MOSFET will be in **cutoff**, and periods when the MOSFET will be in **saturation**.

Effect of Input / Output Loading

Voltage gain:

- input loading (R_s): no effect because gate does not draw current
- output loading (R_L): It detracts from voltage gain because it draws current.

$$|A_v| = g_m(r_o//R_D//R_L) < g_m(r_o//R_D)$$

Common Source (CS) Amplifier

Major Limitations:

- Increase in A_v by increasing the R_D leads to smaller V_D i.e, the voltage $V_{DS} \rightarrow$ essentially limits the voltage swing
- R_D difficult to fabricate in smaller chip area → a major constraint for ICs
- Problems with the precision of R_D

Active loads overcome these problems

- Diode-connected load (FETs in which drain and gate are tied to work as resistors)
- Current source (such as a FET operating in saturation mode)
- FET operating in triode mode

 We can make a two terminal device from a MOSFET by connecting the gate and the drain!

Enhancement Load

Resistor Load

Diode-Connected Load or Enhancement Load

- **Q:** How does this "enhancement load" resemble a resistor?
- A: For this we need to consider the i-v curves for both.

- Now consider the same curve for an **enhancement load**.
 - Since the gate is tied to the drain, we find $v_G = v_D$, and thus $v_{GS} = v_{DS}$. As a result, we find that $v_{DS} > v_{GS} V_T$ always.
 - Therefore, we find that if $v_{GS} > V_T$, the MOSFET will be in saturation ($i_D = K(v_{GS} V_T)^2$), whereas if $v_{GS} < V_T$, the MOSFET is in cutoff ($i_D = 0$).

Diode-Connected Load (contd.)

• Since for enhancement load $i = i_D$ and $v = v_{GS}$, we can describe the enhancement load as:

 So, resistors and enhancement loads are far from exactly the same, but:

1) They **both** have i = 0 when v = 0.

2) They **both** have increasing current *i* with increasing voltage *v*.

 i_{D}

ECE315 / ECE515

Diode-Connected Load (contd.)

For the diode-connected load amplifier, the **load line** is replaced with a **load curve** $(v = V_{DD} - v_{DS})!$

 $V_{DD}' - V_t$

 V_{DS}

VDD

 I_D, V_{DS}

You need to replace all **enhancement loads** with this small-signal model whenever you are attempting to find the **small-signal circuit** of any MOSFET amplifier.

S

g_mv

S

CS Amplifier with Diode-connected load

Q: What is the small-signal open-circuit voltage gain, input resistance, and output resistance of this amplifier?

A: The values that we will determine when we follow precisely the same steps as before!!

VDD

 $-0v_{o}(t)$

- Note that: $I_{D1} = I_{D2} \doteq I_{D}$ and that: $V_{G51} = V_G - \mathbf{0} = V_G$ and also that: $V_{D52} = V_{G52}$ and finally that: $V_{D51} = V_{DD} - V_{D52}$
- Let's **ASSUME** that both M_1 and M_2 are in saturation. Then we **ENFORCE**:
 - $\mathbf{I}_{D1} = \mathbf{K}_{1} \left(\mathbf{V}_{GS1} \mathbf{V}_{T1} \right)^{2}$ $= \mathbf{K}_{1} \left(\mathbf{V}_{G} \mathbf{V}_{T1} \right)^{2}$
- Continuing with the ANALYSIS, we can find the drain current through the enhancement load (I_{D2}),

$$\boldsymbol{I}_{\text{D2}} = \boldsymbol{K}_{\text{2}} \left(\boldsymbol{V}_{\text{G52}} - \boldsymbol{V}_{\text{T2}} \right)^2$$

CS Amplifier with Diode-connected Load (contd.)

Now, we must **CHECK** to see if our assumption is correct.

 $V_{\rm DS2} = \sqrt{\frac{K_1}{K}} \left(V_{\rm G} \right)$

• The saturation assumption will be correct if:

$$-V_{T1}$$
 + V_{T2} $V_{GS1} > V_{T1}$ \therefore if $V_G > V_{T1}$

<u>Step 2 – Calculate small-signal parameters</u>

$$g_{m1} = 2K_1 \left(V_G - V_{T1} \right) \quad \text{and} \quad g_{m2} = 2K_2 \left(V_{GS2} - V_{T2} \right)$$
$$r_{o1} = \frac{1}{\lambda_1 \ I_D} \quad \text{and} \quad r_{o2} = \frac{1}{\lambda_2 \ I_D}$$

•_{V_0}(t)

CS Amplifier with Diode-connected Load (contd.)

<u>Step 3 – Determine the small-signal circuit</u>

- First, let's turn off the DC sources:
- We now replace MOSFET M₁ with its equivalent smallsignal model, and replace the diode-connected load with its equivalent small-signal model.

CS Amplifier with Diode-Connected Load (contd.)

In other words, we adjust the MOSFET channel geometry to set the small-signal gain of this amplifier!

CS Amplifier with Diode-Connected Load (contd.)

 Now let's determine the small-signal input and output resistances of this amplifier!

• It is evident that:
$$R_i = \frac{V_i}{i_i} = \infty$$

• Now for the output resistance, we know that the open-circuit output voltage is:

 $(g_{m1}v_{gs1} - g_{m2}v_{qs2})$

$$i_{os} = -(g_{m1}v_{gs1} - g_{m2}v_{gs2})$$

$$R_{o} = \frac{V_{o}^{oc}}{i_{o}^{sc}} = \frac{-(g_{m1}v_{gs1} - g_{m2}v_{gs2})(r_{o1}||r_{o2})}{-(g_{m1}v_{gs1} - g_{m2}v_{gs2})} = (r_{o1}||r_{o2})$$

• Thus, the small-signal output resistance of this amplifier is equal to:

CS Amplifier with Diode-Connected Load (contd.)

- If variation of η with the output voltage is neglected → the gain is independent of bias currents and voltages
- However, for this to happen the device M₁ has to remain in saturation → this ensures that current I_{D1} is constant → ensures constant g_{m1}
- In other words, the gain remains relatively constant for the variation in input and output signals → ensures that input-output relationship is linear

CS Amplifier with Constant Current Source

Q: I don't understand! Wouldn't the small-signal circuit be:

- Now consider this NMOS amplifier using a **current source**.
 - Note no resistors or capacitors are present!
 - This is a **common source** amplifier.
 - *I_D* stability is not a problem!

A: Remember, every real current source (as with every voltage source) has a source Iresistance r_o . A more accurate current source model is therefore:

CS Amplifier with Constant Current Source (contd.)

Ideally, $r_o = \infty$. However, for good current sources, this output resistance is large (e.g., $r_o = 100 \ k\Omega$). Thus, we mostly **ignore** this value (i.e., approximate it as $r_o = \infty$), but there are some circuits where this resistance makes quite a **difference**. \rightarrow **This** is one of those circuits!

• Therefore, a more **accurate** amplifier circuit schematic is:

CS Amplifier with Constant Current Source (contd.)

• As long as a MOS transistor is in saturation region and $\lambda=0$, the current is independent of the drain voltage and it behaves as an ideal current source seen from the drain terminal.

Constant Current Source (contd.)

Example of poor current source

 Since the variation of the source voltage directly affects the current of a MOS transistor, it does not operate as a good current source if seen from the source terminal