

# <u>Lecture – 15</u>

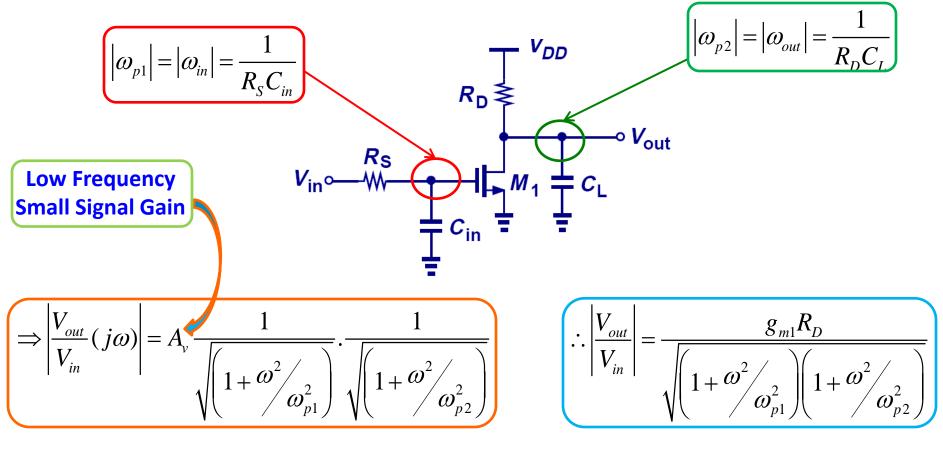
# Date: 17.10.2016

- General Frequency Response
- High Frequency MOSFET Model and Transit Frequency
- Determination of 3-dB Frequency
- CS Stage Analysis using Miller's Approximation, OCTC Method, Exact Technique
- CD and CG Stages



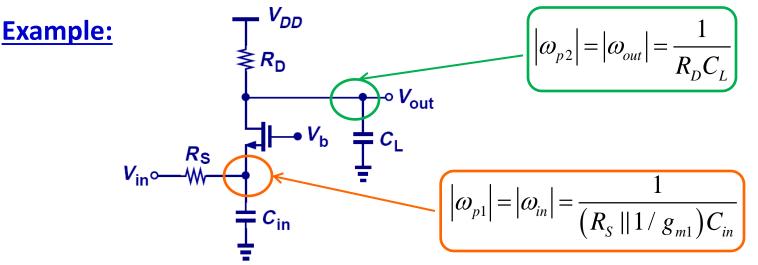
#### **Frequency Response**

<u>Association of poles with nodes</u>: poles of a circuit transfer function is key in the frequency response  $\rightarrow$  it aids in determining the speed of various parts of the circuit



Indraprastha Institute of Information Technology Delhi

#### Frequency Response (contd.)



**Example:** circuit with floating capacitor

 $R_{D} \neq V_{DD}$   $R_{D} \neq V_{DD}$   $C_{F} \rightarrow V_{out}$  $V_{in} \rightarrow W \rightarrow M_{1}$  Now the capacitor C<sub>F</sub> isn't connected between just one node and ground. What do we do?

Miller's Theorem Provides the Solution

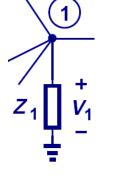


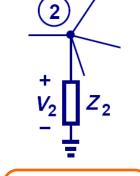
2

## **Miller's Theorem**

• It coverts floating impedance element into two grounded elements

Transform it into two grounded elements





 $\frac{V_1 - V_2}{Z_F} = \frac{V_1}{Z_1}$ 

- The current drawn by Z<sub>F</sub> from node 1 must be equal to that drawn by Z<sub>1</sub>
  - Current injected to node 2 must be equal to that injected to node 2 in both situations:

$$\frac{V_1 - V_2}{Z_F} = -\frac{V_2}{Z_2}$$

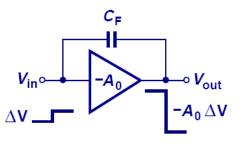
 $Z_{1} = Z_{F} \frac{V_{1}}{V_{1} - V_{2}} = \frac{Z_{F}}{1 - A_{v}}$   $Z_{2} = Z_{F} \frac{V_{1}}{V_{1} - V_{2}} = \frac{Z_{F}}{1 - \frac{1}{A}}$ 

A<sub>v</sub> = low frequency smallsignal gain If  $A_v$  is the gain from node 1 to 2, then a floating impedance  $Z_F$ can be converted to two grounded impedances  $Z_1$  and  $Z_2$ . Indraprastha Institute of Information Technology Delhi

## ECE315/515

# Miller's Theorem (contd.)

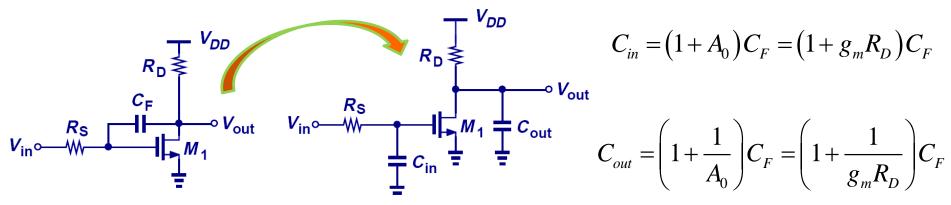
 If Z<sub>F</sub> is capacitive and amplifier is inverting then:



Miller's Theorem  $C_F(1+A_0) \downarrow = C_F(1+\frac{1}{A_0})$   $Z_1 = \frac{1}{(1+A_0)C_Fs}$   $Z_2 = \frac{1}{(1+\frac{1}{A_0})C_Fs}$ With Miller's theorem, we can separate the floating capacitor. However, the input capacitor is

larger than the original floating capacitor. We call this Miller multiplication.

#### **Example: determine poles of the following circuit**



Indraprastha Institute of Information Technology Delhi

#### ECE315/515

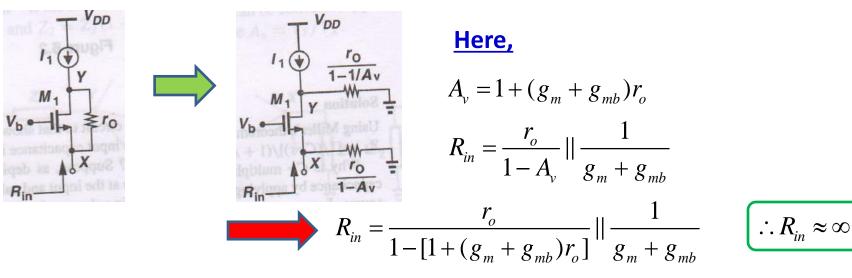
# Miller's Theorem (contd.)

$$\therefore \omega_{in} = \frac{1}{R_S C_{in}} = \frac{1}{R_S \left(1 + g_m R_D\right) C_F}$$

$$\omega_{out} = \frac{1}{R_D C_{out}} = \frac{1}{R_D \left(1 + \frac{1}{g_m R_D}\right) C_F}$$

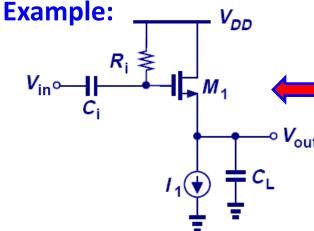
Miller's Theorem requires that the floating impedance and voltage gain be computed at the same frequency. However, apparently we always use lowfrequency gain even at high frequencies. It is done for simplifying the analysis, otherwise the use of Miller Theorem will be no simpler. Therefore it is often called Miller's Approximation

#### **Q:** Calculate the input resistance of the following:



Indraprastha Institute of Information Technology Delhi

#### **General Frequency Response**



In high quality audio amplifier:  $R_i$  establishes a gate bias voltage equal to  $V_{DD}$  for  $M_1$ , and  $I_1$ defines the drain bias current. Assume  $\lambda=0$ ,  $g_m=1/(200\Omega)$ , and  $R_i=100k\Omega$ . Determine the minimum required value of  $C_i$  and the maximum tolerable value of  $C_i$ 

• The input network consisting of R<sub>i</sub> and C<sub>i</sub> attenuates the signal at low frequencies. The roll-off frequency for audio signal is given as:

$$2\pi * (20Hz) = \frac{1}{R_i C_i} = \frac{1}{100 * 10^3 * C_i}$$
  $\therefore C_i = 79.6nF$  Min. Value

 The load capacitance creates a pole at the output node, lowering the gain at the high frequencies. Let us suppose pole frequency at 20kHz (upper end of audio):

$$\omega_{p,out} = \frac{g_m}{C_L} = 2\pi * 20 * 10^3$$

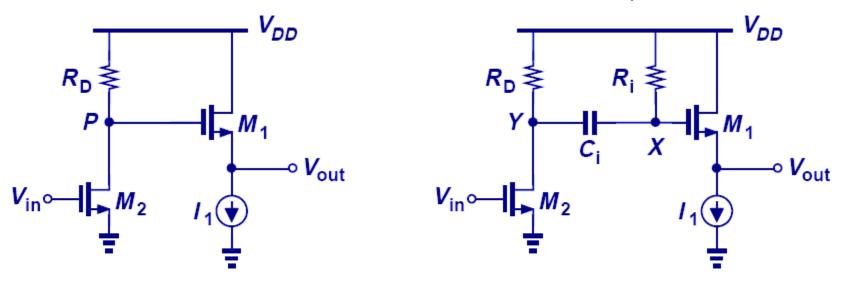




#### **General Frequency Response (contd.)**

Why do we need capacitor C<sub>i</sub> at the input in the previous example?

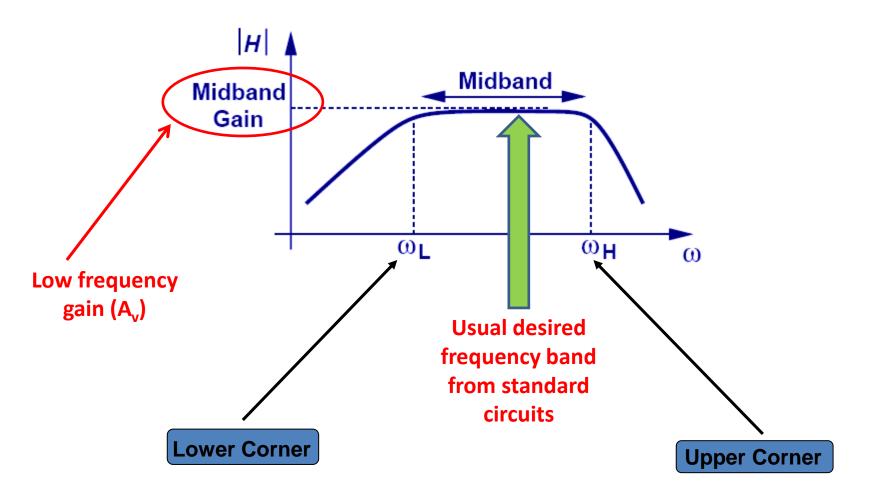
The absence of  $C_i$  could be blessing as it will not affect the performance at low frequencies  $\rightarrow$  we would be saved from computing  $C_i$  as well



- Capacitive coupling, also known as AC coupling, passes AC signals from Y to X while blocking DC contents.
- This technique allows independent bias conditions between stages. Direct coupling does not.

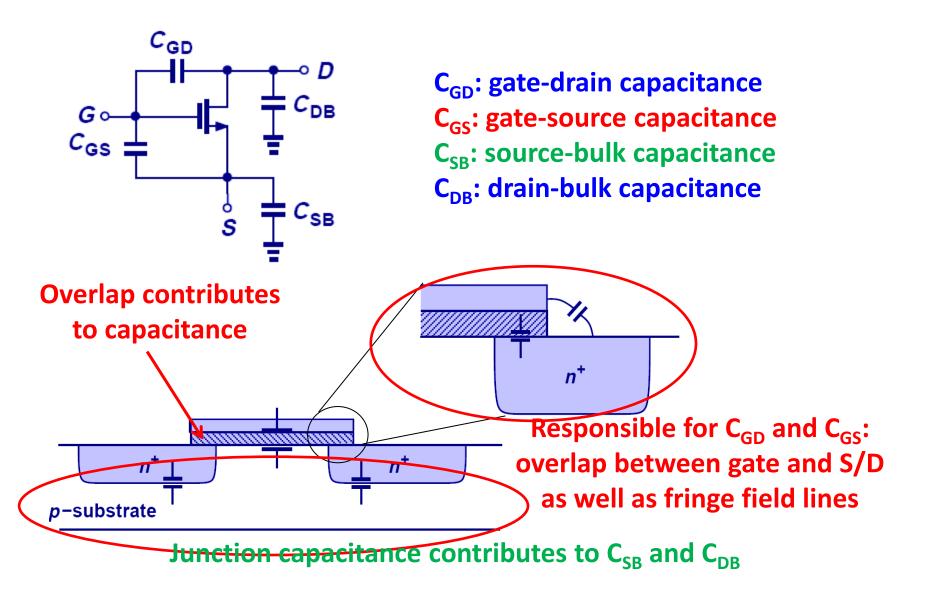


#### **General Frequency Response (contd.)**





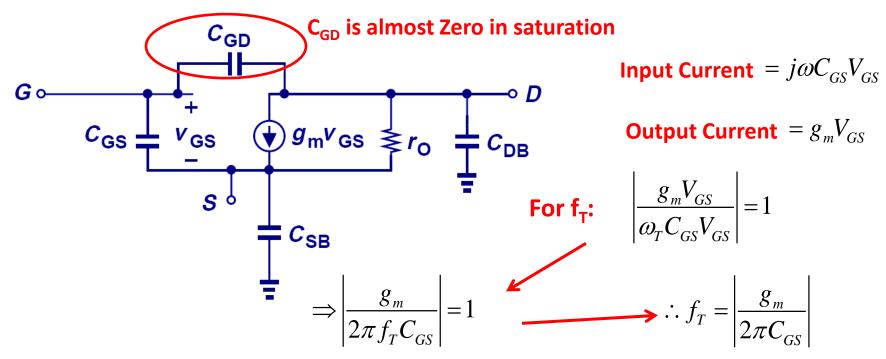
## **High Frequency MOSFET Model**





## **Cut-off Frequency or Transit Frequency**

- So many capacitances in the MOSFET reduces the performance of amplifiers  $\rightarrow$  cut-off or transit frequency,  $f_{\tau}$ , regulates the speed of MOSFET
- It is the frequency at which the small-signal current gain falls to unity



The source-bulk and drain-bulk capacitance doesn't affect the speed of transistor



## **Determination of 3-dB frequency (f<sub>H</sub>)**

- As a designer it is important to understand the implications of various capacitive effects (present in the circuit) on the overall performance of the circuit
- In order to understand such implications there are three different techniques to determine f<sub>H</sub> (a key parameter in high frequency performance estimation)
- Miller's Approximation Technique: It is useful for certain cases when the input resistance is relatively large and output capacitance (C<sub>L</sub>) is relatively small → in such a case the high-frequency response is dominated by the pole formed at the input node
- OCTC Method: Its useful for circuits when its not easy to determine the poles and zeros by hand analysis → is an approximate method
- Exact Analysis: Involves full analysis of the circuit to find the transfer function



# Determination of 3-dB frequency (f<sub>H</sub>) – contd.

**Physical Significance of Poles and Zeros in a Transfer Function:** 

- Think of Poles and Zeros as INFINITY's and ZEROs.
- At Zeros: the system produces ZERO output
- At Poles: the system produces INFINITE output
- Obviously, you cannot produce infinite voltage with any electronics

→ So, it means that, the output will be unbounded (in theory) and saturated at the highest possible value (in practice)

Now, let's talk about a specific case: The TRANSFER FUNCTION can be the IMPEDANCE of a filter, it will be zero (short circuit) at zeros, and INFINITY (open circuit) at poles



#### **Miller Approximation Technique**

• High Frequency Gain function of an amplifier can be given as:

 $\neg_H(s)$ 

Mid-band gain → small-signal gain

A(s)

• F<sub>H</sub>(s) can be represented in terms of poles and zeros as:

$$F_{H}(s) = \frac{(1 + s / \omega_{z1})(1 + s / \omega_{z2})....(1 + s / \omega_{zn})}{(1 + s / \omega_{p1})(1 + s / \omega_{p2})....(1 + s / \omega_{pn})}$$

• If a dominant pole  $(\omega_{p1})$  exists then:

$$F_H(s) \cong \frac{1}{\left(1 + s / \omega_{p1}\right)}$$

Assuming that zeros are usually either at infinity or possess very high value

**Transfer function of amp** 



#### Miller Approximation Technique (contd.)

- Thus presence of a dominant pole provides 3-dB roll-off  $\omega_H \cong \omega_{p1}$  frequency as:
- Condition for the existence of dominant pole: the lowest-frequency pole is at least two octave away from the nearest pole or zero.
- If a dominant pole doesn't exist then:  $F_H(s) = \frac{(1+s/\omega_{z1})(1+s/\omega_{z2})}{(1+s/\omega_{p1})(1+s/\omega_{p2})}$  For 2-pole and 2-zero network

$$\Rightarrow F_{H}(j\omega) = \frac{\left(1 + j\omega / \omega_{z1}\right)\left(1 + j\omega / \omega_{z2}\right)}{\left(1 + j\omega / \omega_{p1}\right)\left(1 + j\omega / \omega_{p2}\right)} \qquad \Rightarrow \left|F_{H}(j\omega)\right|^{2} = \frac{\left(1 + \omega^{2} / \omega_{z1}^{2}\right)\left(1 + \omega^{2} / \omega_{z2}^{2}\right)}{\left(1 + \omega^{2} / \omega_{p1}^{2}\right)\left(1 + \omega^{2} / \omega_{p2}^{2}\right)}$$

- For  $\omega = \omega_{\mathrm{H}} \rightarrow |\mathbf{F}_{\mathrm{H}}|^2 = 1/2$  and therefore:  $\Rightarrow \frac{1}{2} = \frac{\left(1 + \omega_{H}^2 / \omega_{z1}^2\right)\left(1 + \omega_{H}^2 / \omega_{z2}^2\right)}{\left(1 + \omega_{H}^2 / \omega_{p1}^2\right)\left(1 + \omega_{H}^2 / \omega_{p2}^2\right)}$
- $\omega_{\rm H}$  is smaller than all other poles and  $\omega_{\rm H}$  zeros and as a consequence terms with  $\omega_{\rm H}^{-4}$  could be neglected. Therefore simplification gives:

$$\omega_{H} \cong \frac{1}{\sqrt{\left(\frac{1}{\omega_{p1}^{2}} + \frac{1}{\omega_{p2}^{2}}\right) - 2\left(\frac{1}{\omega_{z1}^{2}} + \frac{1}{\omega_{z2}^{2}}\right)}}$$



# **Open Circuit Time Constant (OCTC) Method**

- Its not always straightforward to apply Miller technique and determine the poles and zeros
- In such cases OCTC method prove handy
- Alternate form of F<sub>H</sub>(s) for n-zero and n-pole network is:

$$F_{H}(s) = \frac{1 + a_{1}s + a_{2}s^{2} + \dots + a_{n}s_{n}}{1 + b_{1}s + b_{2}s^{2} + \dots + b_{n}s_{n}}$$

Where, **a** and **b** are related to zeros and poles respectively. For example, **b**<sub>1</sub> is given by:

 $b_1 = \frac{1}{\omega_{p1}} + \frac{1}{\omega_{p2}} + \dots + \frac{1}{\omega_{pn}}$ 

Ref: Paul E. Gray and Campbell L. Searle, Electronic Principles: Physics, Models, and Circuits (1969), John Wiley & Sons Inc., New York

- b<sub>1</sub> can be determined by considering various capacitances in the network one at a time while reducing all other capacitors to zero i.e, replacing them with open circuits
- Determine C<sub>i</sub>R<sub>i</sub> for each capacitors and then compute:

$$b_1 = \sum_{i=1}^n C_i R_i$$



## **Open Circuit Time Constant (OCTC) Method (contd.)**

 If one of the poles is dominant (say P1) then:

$$b_1 \cong \frac{1}{\omega_{p1}} \qquad \qquad \Rightarrow \omega_H \simeq \frac{1}{b_1} = \frac{1}{\sum_i C_i R_i}$$

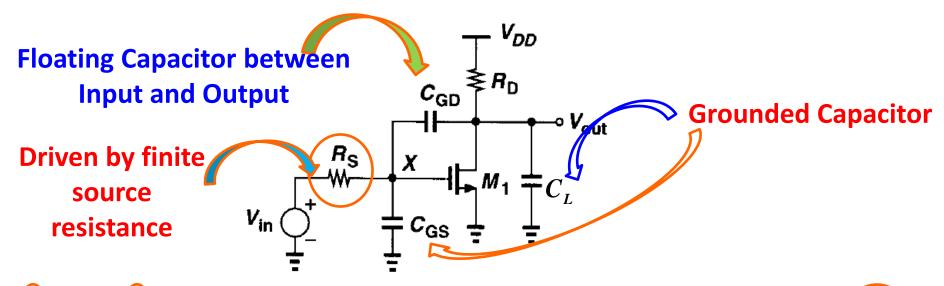
#### Advantage of OCTC method:

- It tells the circuit designer which of the various capacitances is significant in determining the network (amplifier) frequency response
- The relative contribution of the various capacitances to the effective time constant b<sub>1</sub> is immediately obvious
- For example, if in any amplifier the contribution of  $C_{GD}R_{GD}$  in the overall time constant is maximum  $\rightarrow$  then  $C_{GD}$  is dominant capacitor in determining  $f_H \rightarrow$  to increase  $f_H$ , either use MOSFET with smaller  $C_{GD}$  or for a given MOSFET reduce  $R_{GD}$  by either reducing the load impedance or by employing smaller source impedance  $\rightarrow$  furthermore, if source impedance is also fixed then the only way to increase  $f_H$  (and hence the bandwidth) is by reducing the load impedance
- Reduction in load impedance → leads to reduction in A<sub>M</sub>



ECE315/515

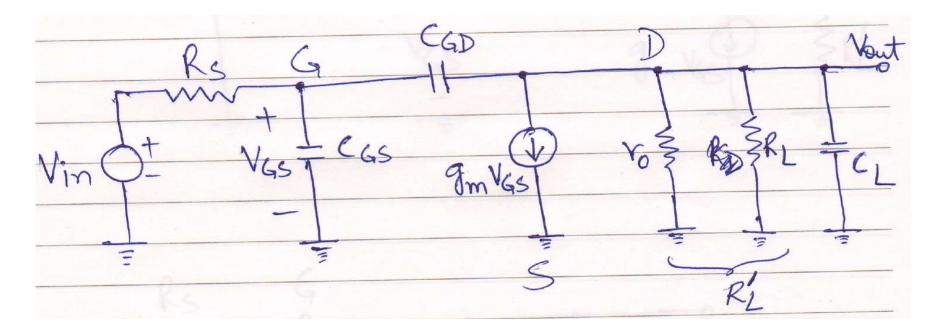
#### **Common Source Amplifier**



| A  | Ι (μΑ)           | L(µm)               | W(µm) | g <sub>m</sub> (uS)                           | C <sub>DB</sub> (fF) | C <sub>GD</sub> (fF) | C <sub>GS</sub> (fF) |  |
|----|------------------|---------------------|-------|-----------------------------------------------|----------------------|----------------------|----------------------|--|
| 10 | 10               | 2                   | 5.78  | 3.613                                         | 5.19                 | 1.84                 | 98.16                |  |
| 15 | 10               | 2                   | 32.5  | 5.33                                          | 27.5                 | 10.4                 | 517.8                |  |
| 20 | 10               | 2                   | 668.2 | 6.66                                          | 319.6                | 239.8                | 6,041.1              |  |
|    | easing<br>Gain E | Constant<br>Current |       | Increasing C <sub>GS</sub> ↔ Reduced<br>Speed |                      |                      |                      |  |

Difficult to achieve high gain and high speed at the same time!

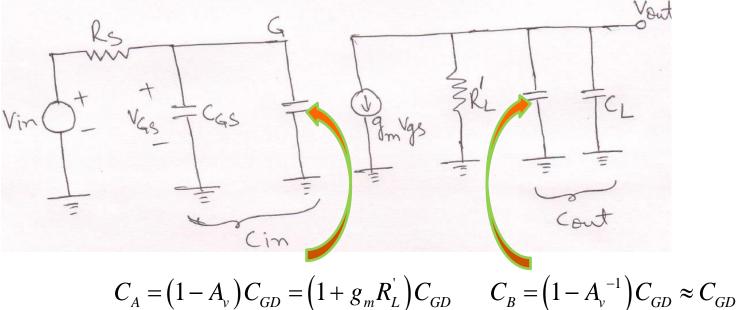




- R<sub>s</sub>: also includes the resistance due to the biasing network
- $R_L$ : includes  $R_D \rightarrow$  usually  $R_L$  is of the order of  $r_o$
- C<sub>L</sub>: represents the total capacitance between the drain and the ground → includes C<sub>DB</sub> and input capacitance of succeeding amplifier stage → C<sub>L</sub> in an IC is substantial



**Analysis using Miller's Approximation** 

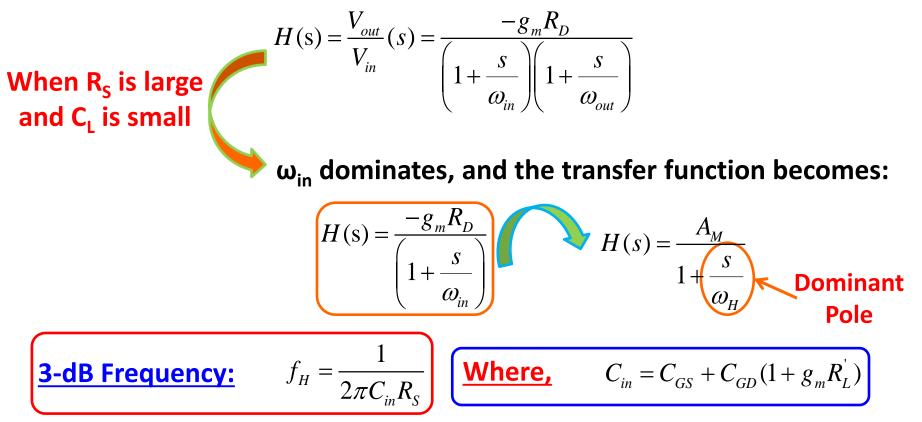


**Therefore the poles are:** 

$$\omega_{in} = \frac{1}{R_S C_{in}} = \frac{1}{R_S (C_{GS} + C_A)} = \frac{1}{R_S (C_{GS} + (1 + g_m R_L) C_{GD})}$$
$$\omega_{out} = \frac{1}{R_L C_{out}} = \frac{1}{R_L (C_L + C_B)} = \frac{1}{R_L (C_L + C_{GD})}$$



Then the transfer function is given by:

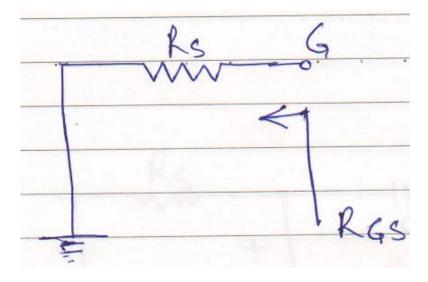


The main error in this expression is that the presence of zero has not been considered



**Analysis using OCTC Method** 

- Considering only C<sub>GS</sub> → open other capacitances and short the voltage sources and open the current sources
- For R<sub>GS</sub> we get:



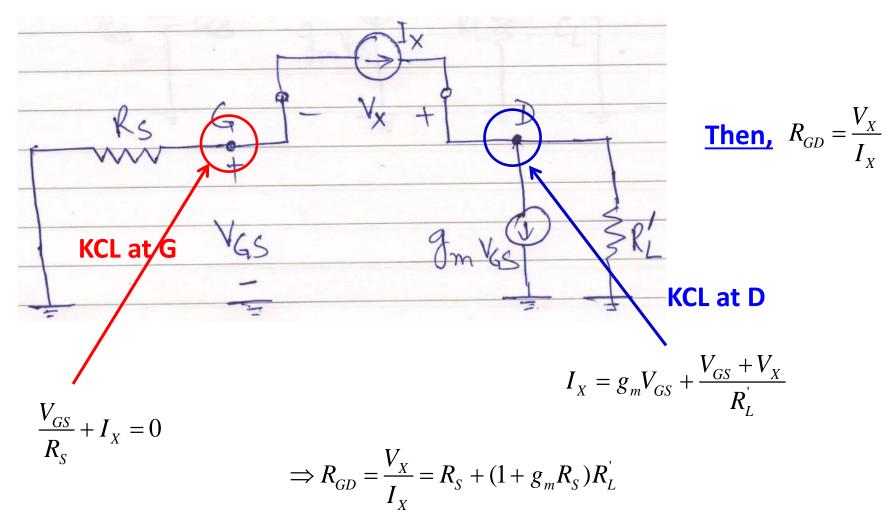




#### ECE315/515

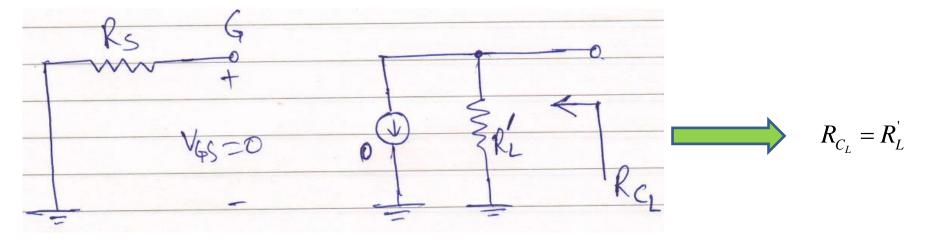
#### **Common Source Amplifier (contd.)**

• Considering only  $C_{GD} \rightarrow open C_{GS}$  and  $C_{L}$ 





• Considering only  $C_L \rightarrow$  open  $C_{GS}$  and  $C_{GD}$ 



Thus, the effective time constant:  $\tau_H = C_{GS}R_{GS} + C_{GD}R_{GD} + C_LR_{C_L}$ 

Therefore the 3-dB roll-off frequency is:  $f_H =$ 

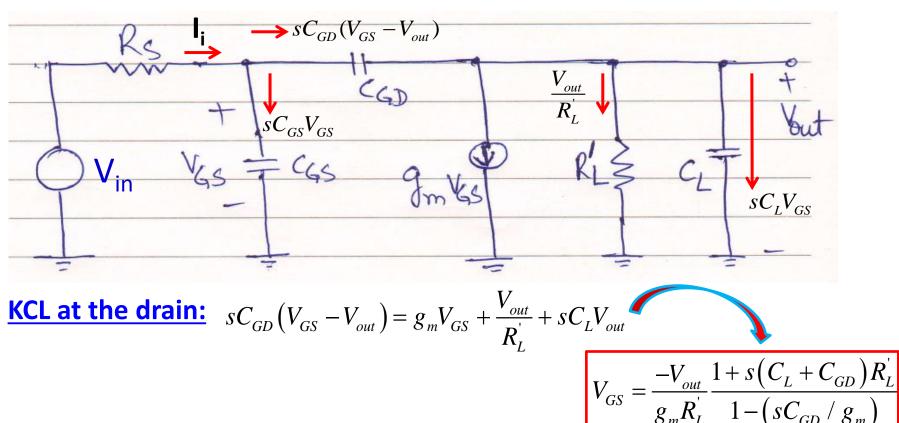
$$f_{H} = \frac{1}{2\pi\tau_{H}}$$

Provides a better estimate than Miller's approximation



#### **Exact Analysis**

- Miller's Approx and OCTC Technique provides insight about the impact of various capacitances on the high frequency response of amplifier
- However, for simple circuits its imperative to carry out exact analysis



Indraprastha Institute of Information Technology Delhi

#### **Common Source Amplifier (contd.)**

KVL at the gate:
$$V_{in} = I_i R_S + V_{GS}$$
KCL at the gate: $I_i = sC_{GS}V_{GS} + sC_{GD}(V_{GS} - V_{out})$  $V_{in} = V_{GS} [1 + s(C_{GS} + C_{GD})R_S] - sC_{GD}R_S V_{out}$ 

$$\Rightarrow \frac{V_{out}}{V_{in}} = \frac{-\left(g_m R_L^{'}\right)\left[1 - s\left(C_{GD} / g_m\right)\right]}{1 + sA + s^2 B} \qquad A = \left[C_{GS} + C_{GD}\left(1 + g_m R_L^{'}\right)\right]R_S + \left(C_L + C_{GD}\right)R_L^{'}$$
$$B = \left[\left(C_L + C_{GD}\right)C_{GS} + C_L C_{GD}\right]R_S R_L^{'}$$

#### **Observations**

- There exists one zero → not known through the approximate analysis
- 2<sup>nd</sup> order denominator [D(s)] → presence of two poles
- There are three capacitances → why only two poles and one zero

Indraprastha Institute of Information Technology Delhi

#### ECE315/515

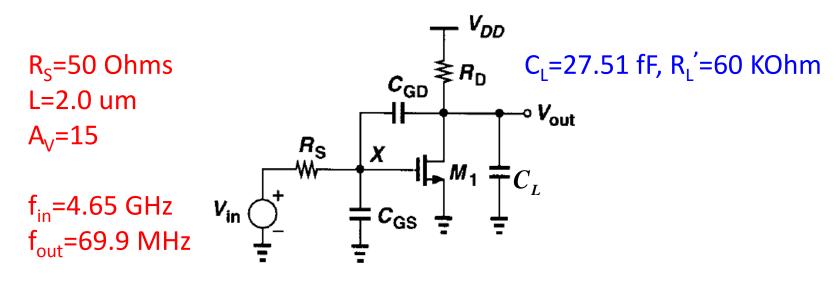
# **Common Source Amplifier (contd.)**

**Poles Determination** 

- As s  $\rightarrow$  0, the transfer function approaches:  $\left(\Rightarrow \frac{V_{out}}{V_{in}} = -(g_m R_L)\right)$  DC Gain
- Let  $\omega_{p1}$  and  $\omega_{p2}$  be the two poles then:  $D(s) = \left(1 + \frac{s}{\omega_{p1}}\right) \left(1 + \frac{s}{\omega_{p2}}\right) = 1 + s \left(\frac{1}{\omega_{p1}} + \frac{1}{\omega_{p2}}\right) + \frac{s^2}{\omega_{p1}\omega_{p2}}$
- If  $\omega_{p1}$  is dominant then:  $D(s) \cong 1 + \frac{s}{\omega_{p1}} + \frac{s^2}{\omega_{p1}\omega_{p2}}$
- Now, equating the coefficients:  $\omega_{p1} = \frac{1}{\left[C_{GS} + C_{GD}\left(1 + g_m R_L^{'}\right)\right]R_S + \left(C_L + C_{GD}\right)R_L^{'}}$  $\omega_{p1}\omega_{p2} = \frac{1}{\left[\left(C_L + C_{GD}\right)C_{GS} + C_L C_{GD}\right]R_S R_L^{'}}$  $\Rightarrow \omega_{p2} = \frac{\left[C_{GS} + C_{GD}\left(1 + g_m R_L^{'}\right)\right]R_S + \left(C_L + C_{GD}\right)R_L^{'}}{\left[\left(C_L + C_{GD}\right)C_{GS} + C_L C_{GD}\right]R_S R_L^{'}}$ 
  - Very similar to the pole determined using OCTC method with the only addition being R<sub>L</sub>'(C<sub>GD</sub> + C<sub>L</sub>)



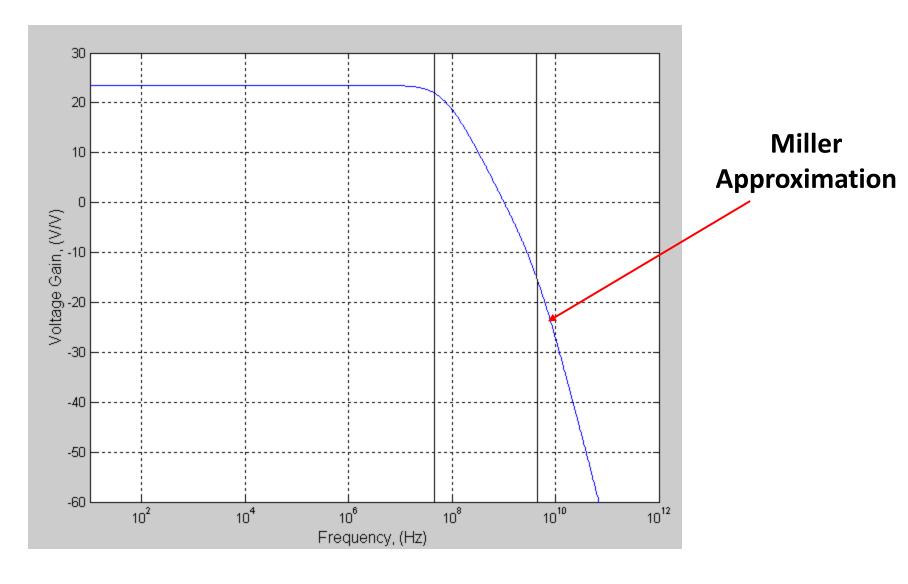
**Example:** 



$$\omega_{in} = \frac{1}{R_{S} \left( C_{GS} + \left( 1 + g_{m} R_{L}^{'} \right) C_{GD} \right)} \qquad \qquad \omega_{out} = \frac{1}{R_{L}^{'} \left( C_{L} + C_{GD} \right)}$$

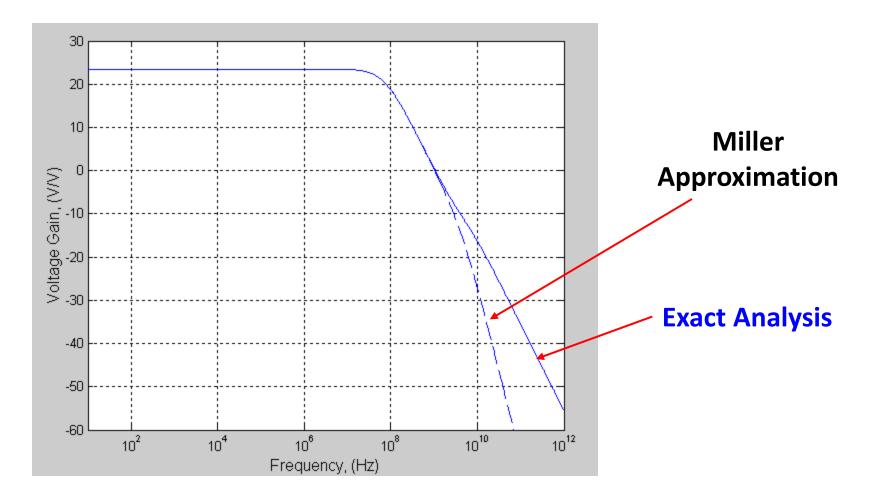


#### **Transfer Function**





## **Transfer Function**

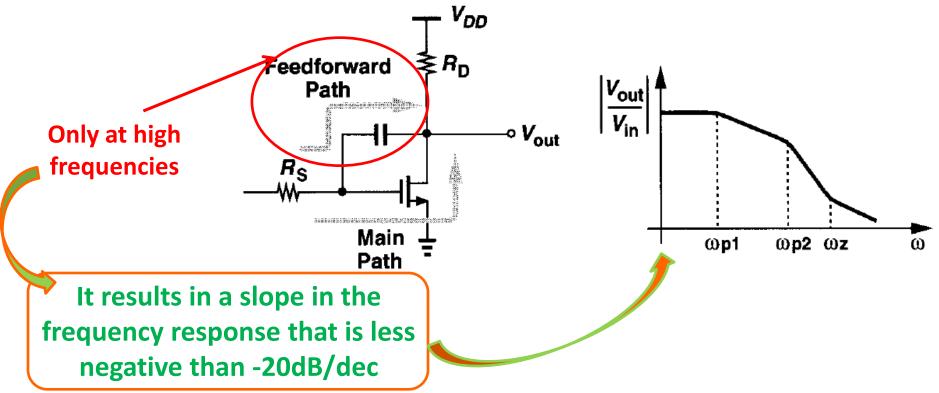




There exists one zero given by:

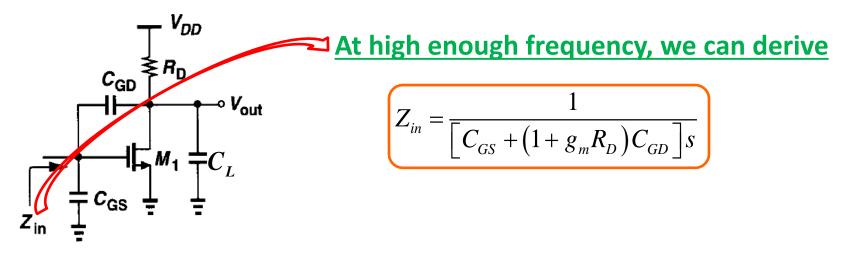
$$\omega_{z1} = \frac{g_m}{C_{GD}}$$

- This zero results from the direct coupling of the input and output through C<sub>GD</sub> at high frequencies
- the capacitor provides a feed-forward path



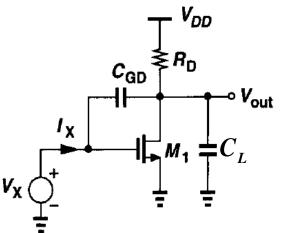


 In high speed applications, the <u>input impedance</u> of the common source stage is extremely important



But at extremely high frequencies where Miller's approximation doesn't give appropriate performance, it's a must to take into account the contribution of output node Indraprastha Institute of Information Technology Delhi

#### **Common Source Amplifier (contd.)**



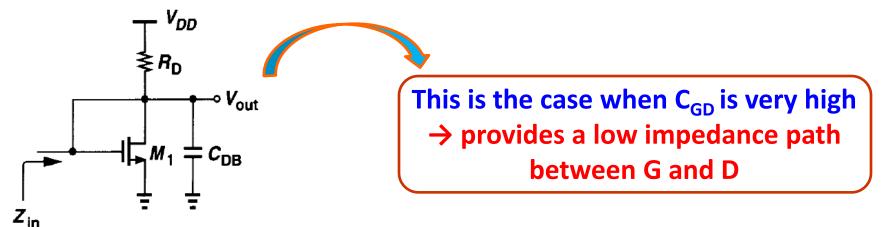
For simplification, C<sub>GS</sub> has been ignored <u>Using small signal model:</u>

# $\frac{V_X}{I_X} = \frac{1 + R_D (C_{GD} + C_{DB})s}{C_{GD} s \left[ (1 + g_m R_D + R_D C_L s) \right]}$

**Therefore:** 

$$Z_{in} = X_{C_{GS}} \parallel \frac{V_X}{I_X}$$

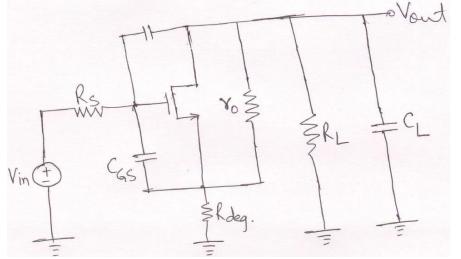
#### **At extremely high frequency**





#### ECE315/515

#### **CS Amplifier with Source Degeneration**



<u>We know,</u>

$$\left(R_{out} = r_o \left[1 + \left(g_m + g_{mb}\right)R_{deg}\right]\right)$$

$$G_m = \frac{g_m}{1 + (g_m + g_{mb})R_{deg}}$$

- To determine the effective time constant, use OCTC by considering one capacitor at a time.
- Consider  $C_{GD}$  first:  $R_{GD} = R_S (1 + G_m R_L) + R_L$  Where,  $R_L = R_L \parallel R_{out}$
- Then Consider  $C_L$ :  $R_{C_L} = R_L || R_{out} = R_L'$
- Finally Consider C<sub>GS</sub>:  $R_{GS} = \frac{R_S + R_{deg}}{1 + (g_m + g_{mb})R_{deg}} \left(\frac{r_o}{r_o + R_L}\right)$



#### ECE315/515

#### **CS Amplifier with Source Degeneration (contd.)**

• Now, the effective time constant:

$$\tau_H = C_{GS} R_{GS} + C_{GD} R_{GD} + C_L R_{C_L}$$

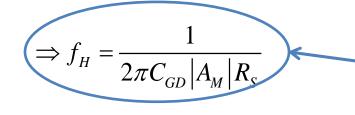
For relatively large R<sub>s</sub> the contribution of C<sub>GD</sub>R<sub>GD</sub> in open circuit time constants (τ<sub>H</sub>) will be largest.

$$\Rightarrow \tau_H = C_{GD} R_{GD} \qquad \qquad \therefore f_H \cong \frac{1}{2\pi C_{GD} R_{GD}}$$

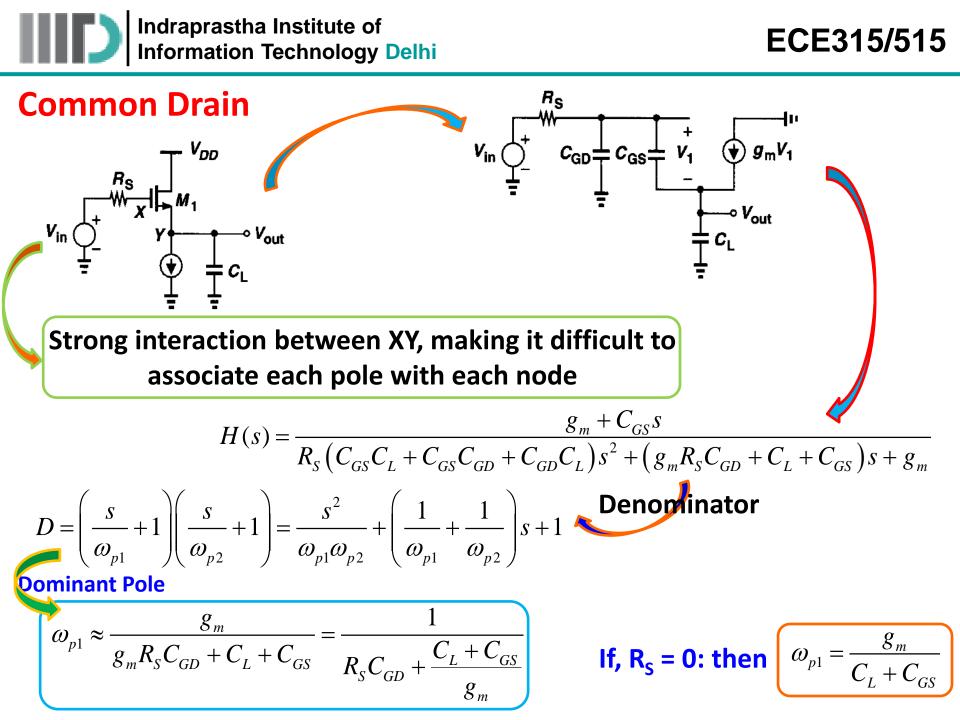
#### **Comment**

- If  $R_{deg}$  is increased  $\rightarrow$  the mid-band gain  $A_M$  will decrease  $\rightarrow$  this causes reduction in  $R_{GD} \rightarrow$  as a result  $f_H$  increases
- As G<sub>m</sub>R<sub>L</sub>' >>1 and G<sub>m</sub>R<sub>s</sub>>>1 the term R<sub>GD</sub> can be approximated as:

$$R_{GD} \cong G_m R_L R_S = |A_M| R_S$$



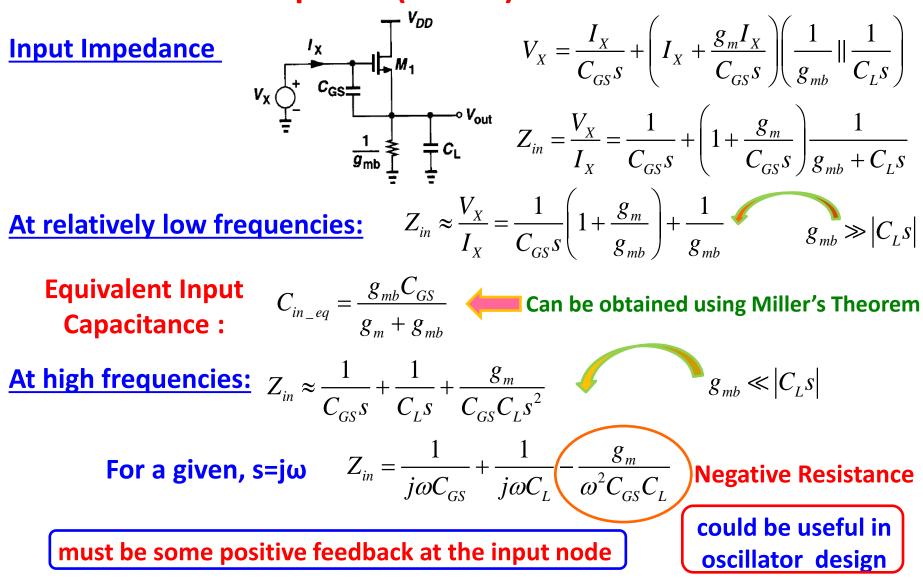
Gain bandwidth product  $(f_H, |A_M|)$ remains constant for fixed  $R_s \rightarrow$ however other capacitances make it variable



Indraprastha Institute of Information Technology Delhi

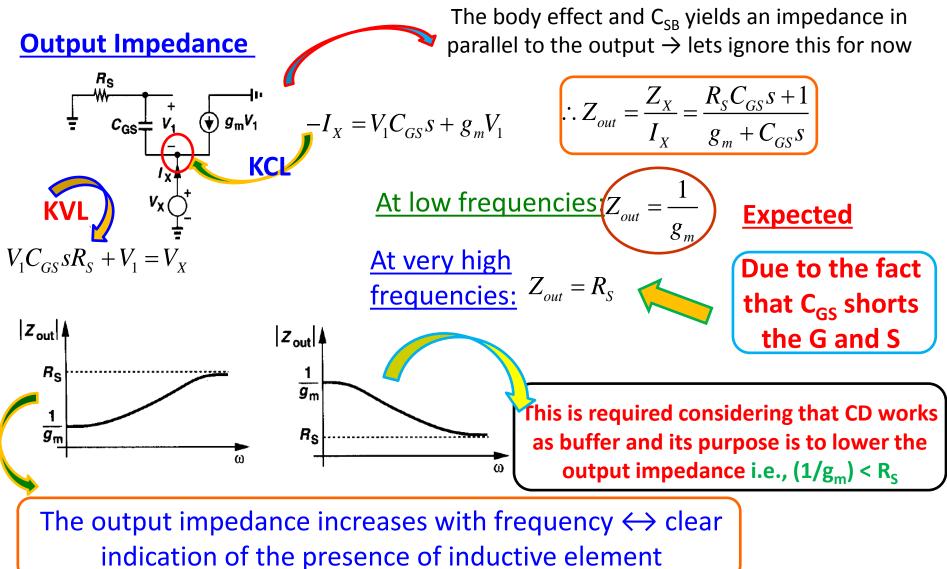
#### ECE315/515

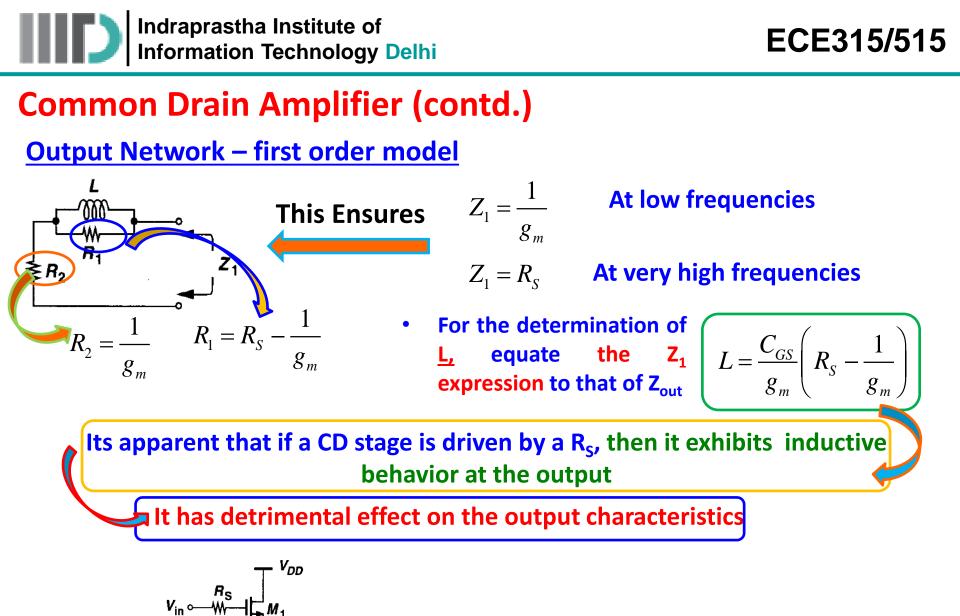
## **Common Drain Amplifier (contd.)**



Indraprastha Institute of Information Technology Delhi

#### **Common Drain Amplifier (contd.)**

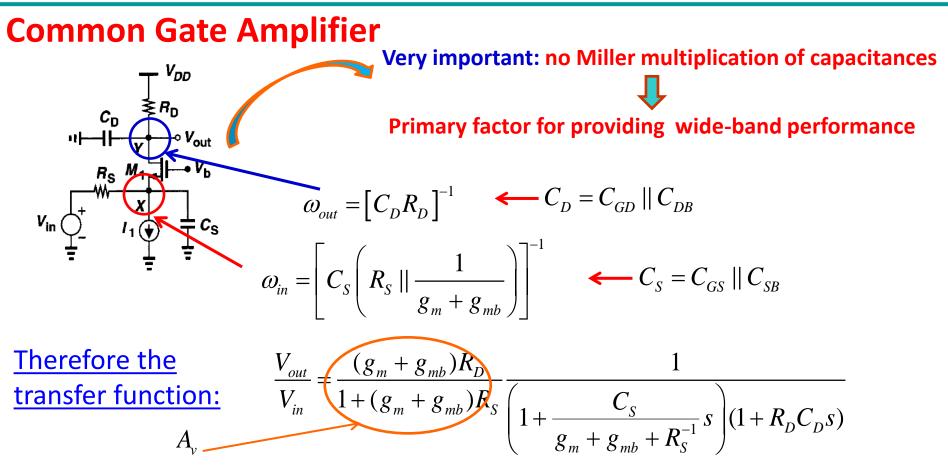




—∘ V<sub>out</sub>

For example, the ringing problem in step response





- If we consider channel length modulation → not easy to associate a pole to the input node → direct analysis is needed to get the transfer function
- The low input impedance may load the preceding stage



## **Common Gate Amplifier (contd.)**

- The voltage drop across RD is typically maximized to obtain a reasonable gain, therefore the dc level of input signal must be low
- CG stage with relatively large capacitance at the input → possesses low output impedance → good for cascode configuration

# **Cascode Stage**

#### Why do we need cascode stage?

- High input impedance good in a sense that it doesn't disturb the previous stage and doesn't get affected by the previous stage
- High gain important any way!
- Relatively higher output impedance doesn't disturb the succeeding stages
- How about freq response?
  - Provides a broader bandwidth of operation  $\rightarrow$  due to CG stage (no Miller approximation of intrinsic capacitor)  $\rightarrow$  it was the initial motivating factor for cascode stage!!!

Indraprastha Institute of Information Technology Delhi

#### ECE315/515

# **Cascode Stage (contd.)**

M<sub>2</sub>

 $C_{GD1}$ 

 $\Rightarrow C_{DB2} + C_L$ 

V<sub>b</sub> ⊷



With assumption that R<sub>D</sub> is small and the channel length modulation is negligible

For equal dimensions of  $M_1$  and  $M_2$ :  $A_M$  approximately equals  $1 \rightarrow \text{therefore } C_{GD}$  gets multiplied by a factor of roughly 2 both at node A as well as at node X  $\rightarrow$  much smaller multiplication factor as compared to a single CS stage

Therefore the pole associated with node A is:

$$\omega_{p,A} = \frac{1}{R_{S} \left[ C_{GS1} + \left( 1 + \frac{g_{m1}}{g_{m2} + g_{mb2}} \right) C_{GD1} \right]}$$

1

Where

is given by:

**<u>Capacitance at node X:</u> 2C**<sub>GD1</sub> + C<sub>DB1</sub> + C<sub>SB2</sub> + C<sub>GS2</sub>

**Therefore the pole associated with node X is:**  $\omega_{p,X} = \frac{g_{m2} + g_{mb2}}{2C_{GD1} + C_{DB1} + C_{SB2} + C_{GS2}}$ 

Indraprastha Institute of Information Technology Delhi

## ECE315/515

# **Cascode Stage (contd.)**

**Capacitance at node Y:** C<sub>DB2</sub> + C<sub>L</sub> + C<sub>GD2</sub>

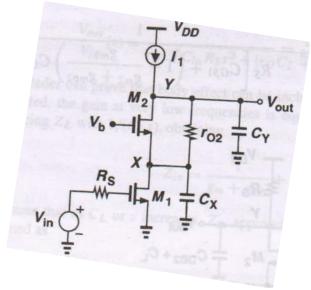
Therefore the<br/>pole associatedawith node Y is:

 $\omega_{p,Y} = \frac{1}{R_D \left( C_{DB2} + C_L + C_{GD2} \right)}$ 

- Do you have any control on the choice of poles?
- <u>Yes</u>  $\rightarrow$  through selection of appropriate devices
- Usually  $\omega_{p,X}$  is chosen very high  $\rightarrow$  to obtain better stability

Instead of  $R_D \rightarrow$  if a constant current source is used  $\rightarrow$  what happens?  $\rightarrow$  do the designer have control on the choice of poles?

#### How about output impedance?



If we ignore  $C_{GD1}$  and  $Z_{out} = (1 + g_{m2}r_{o2})Z_X + r_{o2}$ the capacitance at the node Y then:  $= r_{o1} || (C_X s)^{-1}$ 

 $Z_{out}$  contains a pole at  $(r_{o1}C_X)^{-1}$ 

Z<sub>out</sub> falls above this frequency