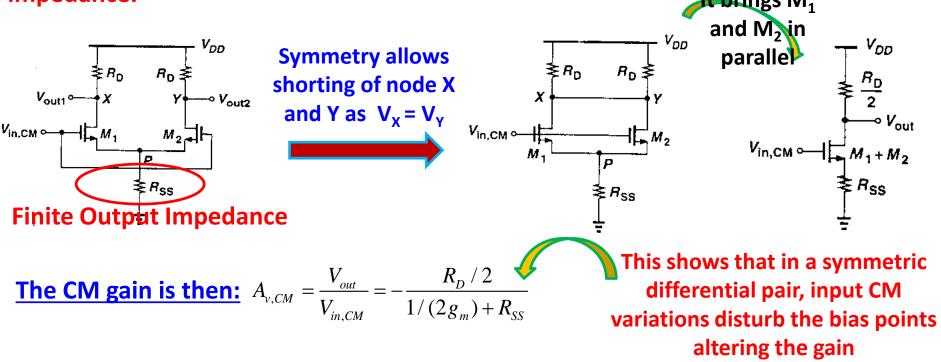


<u>Lecture – 12</u>

Date: 26.09.2016

- Differential Pair with Common Mode Input
- Examples
- Common Mode Rejection Ratio

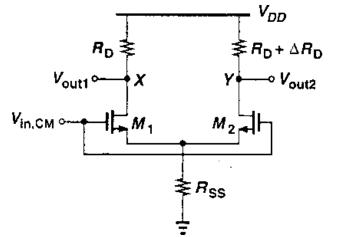


MOS Differential Pair – Common Mode Response

Quantitative Analysis

- In ideal condition, differential pair has the ability to suppress variations in the common-mode voltage
- However, in practical scenarios there is always some CM output

Case-I: differential pair is symmetric but the current source has finite output impedance.


ECE315/515

MOS Differential Pair – Common Mode Response (contd.)

Thus the finite output impedance of the tail current source results in some common-mode gain in a symmetric differential pair

In addition, input CM variations also limit the output voltage swings

<u>Case-II</u>: Effect of input common-mode variation when there is mismatch in R_D and the differential pair suffers from finite output impedance of current source.

- What happens to V_X and V_Y as $V_{in,CM}$ increases?
- Since M_1 and M_2 are symmetric $\rightarrow I_{D1}$ and I_{D2} increases by same amount:

$$\Delta I_D = \frac{g_m}{1 + 2g_m R_{SS}} \Delta V_{in,CM}$$

• The respective change in V_{χ} and V_{γ} are given by:

$$\Delta V_X = -\Delta V_{in,CM} \frac{g_m}{1 + 2g_m R_{SS}} R_D$$

$$\Delta V_{Y} = -\Delta V_{in,CM} \frac{g_{m}}{1 + 2g_{m}R_{SS}} \left(R_{D} + \Delta R_{D}\right)$$

Indraprastha Institute of Information Technology Delhi

ECE315/515

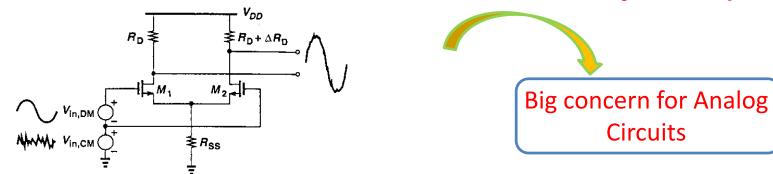
MOS Differential Pair – Common Mode Response (contd.)

 The differential output due to mismatched R_D is:

$$\Delta V_X - \Delta V_Y = -\Delta V_{in,CM} \left[\frac{g_m}{1 + 2g_m R_{SS}} R_D - \frac{g_m}{1 + 2g_m R_{SS}} R_D - \frac{g_m}{1 + 2g_m R_{SS}} \Delta R_D \right]$$
$$\therefore \Delta V_X - \Delta V_Y = \left(\frac{g_m}{1 + 2g_m R_{SS}} \Delta R_D \right) \Delta V_{in,CM}$$

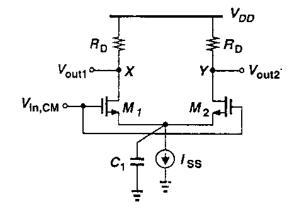
 It is apparent that a small common-mode input can generate a differential mode output → usually denoted by a metric called A_{CM-DM}

$$A_{CM-DM} = \frac{\Delta V_{X} - \Delta V_{Y}}{\Delta V_{in,CM}} = \frac{g_{m}}{1 + 2g_{m}R_{SS}} \Delta R_{D}$$


Thus a common-mode input introduces a differential component, when the load is mis-matched, at the output

circuit exhibits common-mode to differential conversion

if the input of a differential pair includes both a differential signal and common-mode noise, the output is corrupted version of the input



MOS Differential Pair – Common Mode Response (contd.)

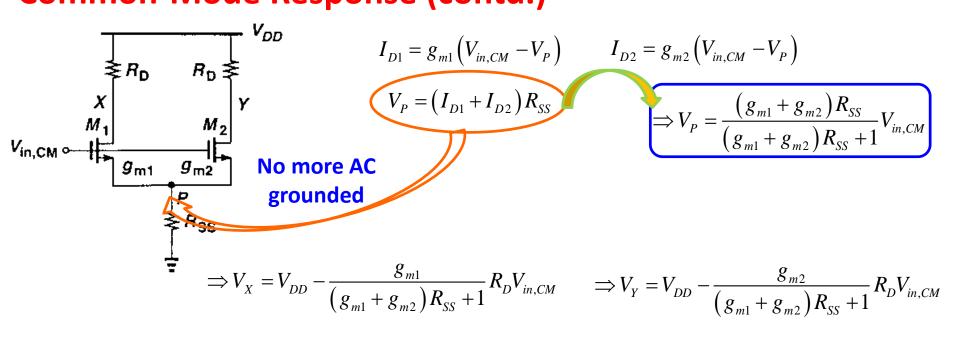
Impact of common-mode to differential conversion

 With the increase in frequency of operation, the total capacitance (arising from the parasitics of the current source and the source-bulk junctions of M₁ and M₂) shunting the tail current source introduces larger tail current variations → This large variation causes substantial common-mode to differential conversion even for very high output impedance of current source

Furthermore, The asymmetry due to load impedance mismatch (and hence the resulting common-mode to differential conversion) corrupts the amplified differential output

Common-Mode Response (contd.)

Impact of common-mode to differential conversion


- Summary: the common mode response of differential pairs depend on the output impedance of the tail current and the asymmetries in the circuit → manifestation of two effects
 - Variation of the output CM level (in the absence of mismatches)
 - Shifting of input common-mode variations to higher level at the output
- How about presence of mismatches?
 - Mismatches in R_D and mismatches in transistors (i.e, mismatches in transconductance)
 - The impact of transconductance mismatch on common-mode to differential conversion is more significant

Case-III: Effect of mismatches between M_1 and M_2 (dimension and V_T mismatches)

The asymmetry due to mismatch in the transistors generates slightly different currents in the two paths \rightarrow leads to unequal transconductance

Indraprastha Institute of Information Technology Delhi

Common-Mode Response (contd.)

$$\therefore V_X - V_Y = -\frac{g_{m1} - g_{m2}}{\left(g_{m1} + g_{m2}\right)R_{SS} + 1}R_D V_{in,CM}$$

• The mismatch in the transistors convert the input CM variations to a differential $A_{CM-DM} =$ error by a factor:

$$V_{CM-DM} = \frac{V_X - V_Y}{V_{in,CM}} = -\frac{\Delta g_m R_D}{(g_{m1} + g_{m2})R_{SS} + 1}$$

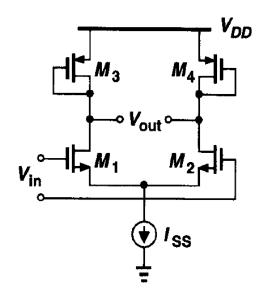
Unwanted

Common-Mode Response (contd.)

- Ideally, this unwanted A_{CM-DM} is normalized to the wanted $A_{DM} \rightarrow$ the normalization factor is called CMRR
- For a differential pair with mis-matched transistor but operating at equilibrium, the differential gain is:

$$CMRR = \left| \frac{A_{DM}}{A_{CM-DM}} \right|$$

$$|A_{DM}| = \frac{R_D}{2} \frac{g_{m1} + g_{m2} + 4g_{m1}g_{m2}R_{SS}}{1 + (g_{m1} + g_{m2})R_{SS}}$$


• Where,
$$g_m = (g_{m1} + g_{m2})/2$$

$$\Rightarrow CMRR = \left|\frac{A_{DM}}{A_{CM-DM}}\right| = \frac{g_{m1} + g_{m2} + 4g_{m1}g_{m2}R_{SS}}{2\Delta g_m} = \frac{g_m}{\Delta g_m} (1 + 2g_m R_{SS})$$

Example – 1

- In the following circuit, $({}^{W}/{}_{L})_{1,2} = {}^{50}/{}_{0.5}$, $({}^{W}/{}_{L})_{3,4} = {}^{10}/{}_{0.5}$ and $I_{SS} = 0.5mA$. Also, I_{SS} is implemented with an NMOS having $({}^{W}/{}_{L})_{SS} = {}^{50}/{}_{0.5}$ while $V_{DD} = 3V$.
 - What are the minimum and maximum allowable input CM levels if the differential swings at the input and output are small.

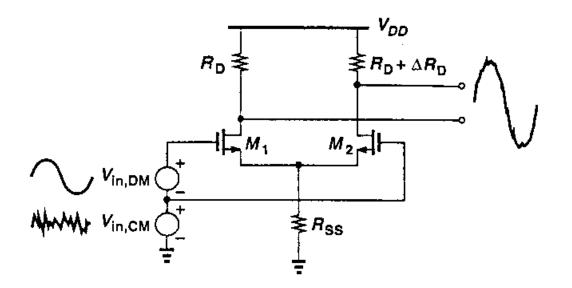
Table 2.1 Level 1 SPICE Models for NMOS and PMOS Devices.			
NMOS Model LEVEL = 1	VTO = 0.7	GAMMA = 0.45	PHI = 0.9
NSUB = 9e+14	LD = 0.08e-6	UO = 350	LAMBDA = 0.1 $CJSW = 0.35e-11$ $JS = 1.0e-8$
TOX = 9e-9	PB = 0.9	CJ = 0.56e-3	
MJ = 0.45	MJSW = 0.2	CGDO = 0.4e-9	
$\begin{array}{l} \mbox{PMOS Model} \\ \mbox{LEVEL} = 1 \\ \mbox{NSUB} = 5e{+}14 \\ \mbox{TOX} = 9e{-}9 \\ \mbox{MJ} = 0.5 \end{array}$	VTO = -0.8	GAMMA = 0.4	PHI = 0.8
	LD = 0.09e-6	UO = 100	LAMBDA = 0.2
	PB = 0.9	CJ = 0.94e-3	CJSW = 0.32e-11
	MJSW = 0.3	CGDO = 0.3e-9	JS = 0.5e-8

Indraprastha Institute of Information Technology Delhi

Example – 1 (contd.)

$$I_{D1} = \frac{I_{SS}}{2} = 0.25 mA$$
 $(V_{OV})_1 = 0.193V$

$$(V_{in,CM})_{min} = V_{GS1} + (V_{OV})_{SS} = 0.7 + 0.193 + 0.273 = 1.17V$$


$$(V_{in,CM})_{\text{max}} = V_{DD} - |V_{GS3}| + V_{TN} \qquad |V_{GS3}| = |V_{TP}| + \sqrt{\frac{2I_{D3}}{\mu_p C_{ox} \left(\frac{W}{L}\right)_3}} = 1.61V$$

$$\therefore \left(V_{in,CM} \right)_{\text{max}} = 3 - 1.61 + 0.7 = 2.09V$$

Example – 2

- In the following circuit, $({}^{W}/{}_{L})_{1,2} = {}^{50}/{}_{0.5}$ and $R_{D} = 2k\Omega$. Suppose R_{SS} represents the output impedance on an NMOS current source with $({}^{W}/{}_{L})_{SS} = {}^{50}/{}_{0.5}$ and a drain current of 1mA. The input signal consists of $V_{in,DM} = 1.5V + V_n(t)$, where $V_n(t)$ denotes noise with a peak-to-peak amplitude of 100mV. Assume ${}^{\Delta R}/{}_{R} = 0.5\%$.
 - Calculate CMRR

