

<u>Lecture – 11</u>

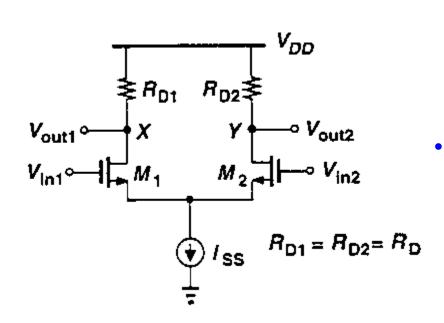
Date: 15.09.2016

- MOS Differential Pair
- Quantitative Analysis differential input
- Small Signal Analysis



Qualitative Analysis – differential input

• Let us check the effect of $V_{in1} - V_{in2}$ variation from $-\infty$ to ∞



- V_{in1} is much more –ve than V_{in2} then:
 - M₁ if OFF and M₂ is ON
 - $I_{D2} = I_{SS}$
 - $V_{out1} = V_{DD}$ and $V_{out2} = V_{DD} I_{SS}R_D$
- V_{in1} is brought closer to V_{in2} then:
 - M₁ gradually turns ON and M₂ is ON
 - Draws a fraction of I_{SS} and lowers V_{out1}
 - I_{D2} decreases and V_{out2} rises

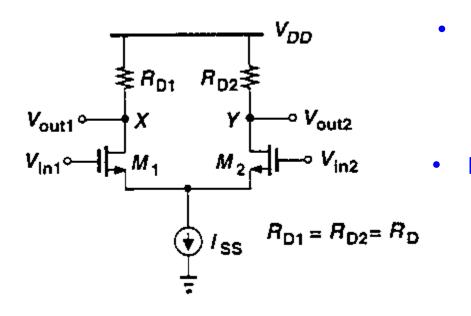
$$V_{in1} = V_{in2}$$

• $V_{out1} = V_{out2} = V_{DD} - I_{SS}R_D/2$

MOS Differential Pair

Qualitative Analysis – differential input

• Let us check the effect of $V_{in1} - V_{in2}$ variation from $-\infty$ to ∞

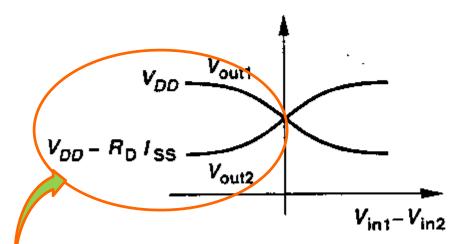


- V_{in1} becomes more +ve than V_{in2} then:
 - M₁ if ON and M₂ is ON
 - M₁ carries greater I_{ss} than M₂
- For sufficiently large $V_{in1} V_{in2}$:
 - All of the I_{ss} goes through $M_1 \rightarrow M_2$ is OFF
 - $V_{out1} = V_{DD} I_{SS}R_{D}$ and $V_{out2} = V_{DD}$

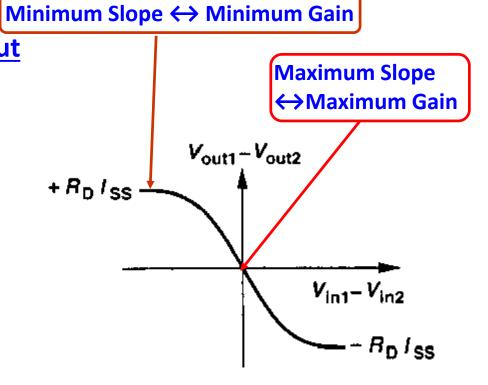
MOS Differential Pair

<u>Qualitative Analysis – differential input</u>

Plotting V_{out1} – V_{out2} versus V_{in1} – V_{in2}



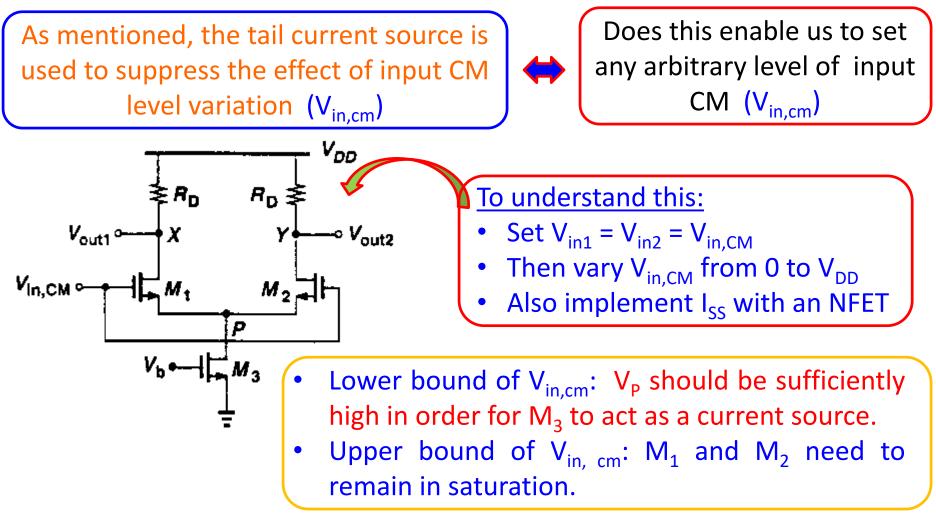
The maximum and minimum levels at the output are well defined and is independent of input CM level (V_{in,cm})



The circuit becomes more nonlinear as the input voltage swing increases (i.e., $V_{in1} - V_{in2}$ increases) \leftrightarrow at $V_{in1} = V_{in2}$, the circuit is said to be in equilibrium

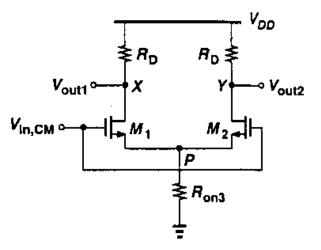
<u>Qualitative Analysis – common mode input</u>

• Now let us consider the common mode behavior of the circuit



<u>Qualitative Analysis – common mode input</u>

- What happens when V_{in,CM} = 0?
 - M₁ and M₂ will be OFF and M₃ can be in <u>triode</u> for high enough V_b
 - I_{D1} = I_{D2} = 0 ← circuit is incapable of amplification



- Now suppose V_{in,CM} becomes more +ve
 - M_1 and M_2 will turn ON if $V_{in,CM}$ exceeds V_T
 - I_{D1} and I_{D2} will continue to rise with the increase in $V_{in,CM}$
 - V_P will track $V_{in,CM}$ as M_1 and M_2 work like a source follower
 - For high enough $V_{in,CM}$, M_3 will be in saturation as well
- If V_{in,CM} rises further
 - M_1 and M_2 will remain in saturation if:

Qualitative Analysis – common mode input

• For M₁ and M₂ to remain in saturation:

$$V_{GS1,2} - V_T \le V_{DS1,2} \qquad \Rightarrow V_{in,CM} - V_T \le V_{DD} - \frac{I_{SS}}{2}R_D \qquad \Rightarrow V_{in,CM} \le V_T + V_{DD} - \frac{I_{SS}}{2}R_D$$
$$\therefore (V_{in,CM})_{\max} = V_T + V_{DD} - \frac{I_{SS}}{2}R_D$$

The lowest value of V_{in,CM} is determined by the need to keep the constant current source operational:

$$V_{in,CM} - V_{GS1,2} \ge V_{GS3} - V_T$$
$$\Rightarrow V_{in,CM} \ge V_{GS1,2} + (V_{GS3} - V_{T3})$$

$$V_{GS1,2} + (V_{GS3} - V_T) \le V_{in,CM} \le \min\left[V_{DD} - \frac{I_{SS}}{2}R_D + V_T, V_{DD}\right]$$

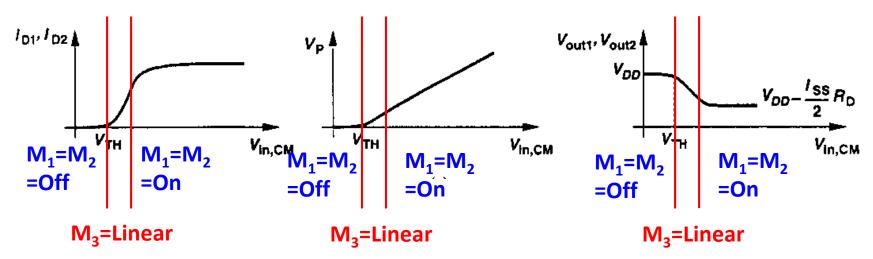
MOS Differential Pair

<u>Qualitative Analysis – common mode input</u>

• Thus, V_{in,CM} is bounded as:

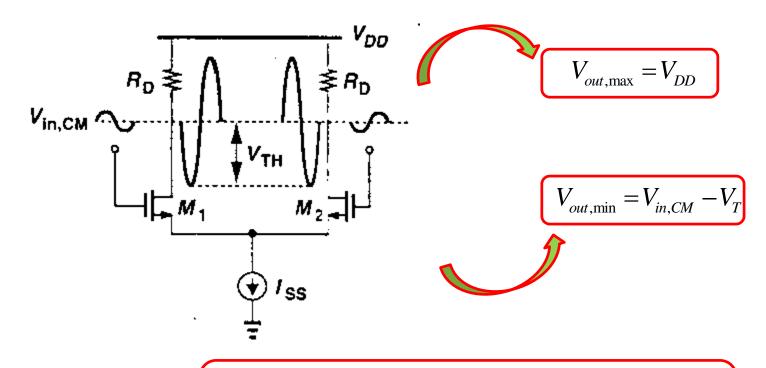
$$V_{GS1,2} + (V_{GS3} - V_T) \le V_{in,CM} \le \min\left[V_{DD} - \frac{I_{SS}}{2}R_D + V_T, V_{DD}\right]$$

• Summary:



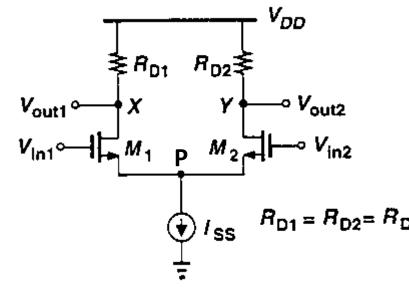
Qualitative Analysis – common mode input

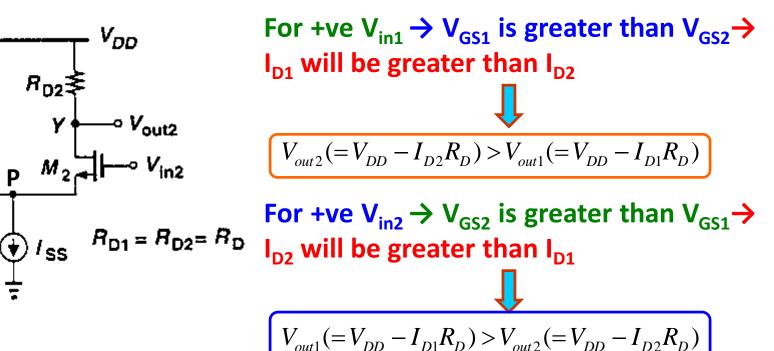
• How large can the output voltage swings of a differential pair be?



The higher the input CM level, the smaller the allowable output swings.

Quantitative Analysis – differential input

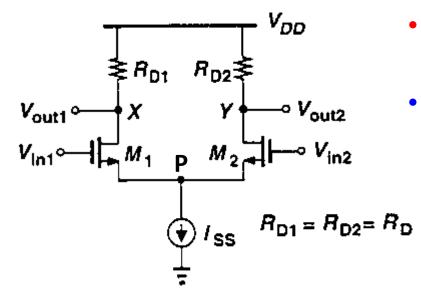




It is thus apparent that the differential pair respond to differentialmode signals \rightarrow by providing differential output signal between the two drains

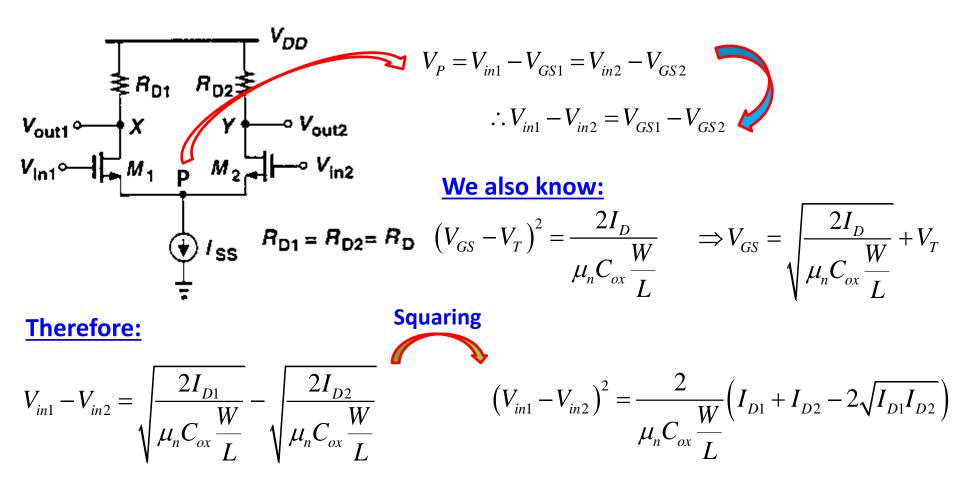
Differential Pair – Large Signal Analysis

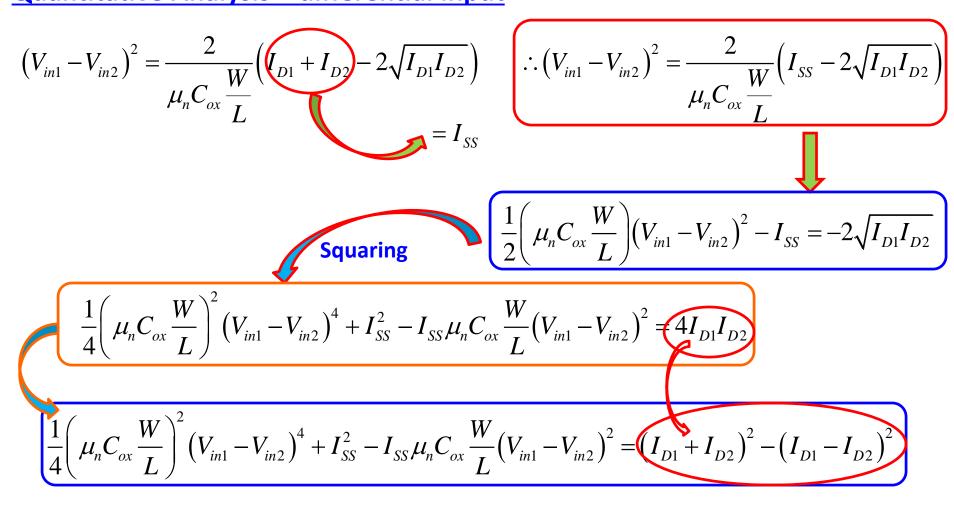
<u>Quantitative Analysis – differential input</u>



- The idea is to define I_{D1} and I_{D2} in terms of input differential signal $V_{in1} V_{in2}$
- The circuit doesn't include connection details considering that these drain current equations do not depend on the external circuitries

• Assumptions: M₁ and M₂ are always in saturation; differential pair is perfectly matched; channel length modulation is not present





$$(I_{D1} - I_{D2})^{2} = -\frac{1}{4} \left(\mu_{n} C_{ox} \frac{W}{L} \right)^{2} \left(V_{in1} - V_{in2} \right)^{4} + I_{SS} \mu_{n} C_{ox} \frac{W}{L} \left(V_{in1} - V_{in2} \right)^{2}$$
$$I_{D1} - I_{D2} = \frac{1}{2} \left(\mu_{n} C_{ox} \frac{W}{L} \right) \left(V_{in1} - V_{in2} \right) \sqrt{\frac{4I_{SS}}{\mu_{n} C_{ox} \frac{W}{L}} - \left(V_{in1} - V_{in2} \right)^{2}}$$

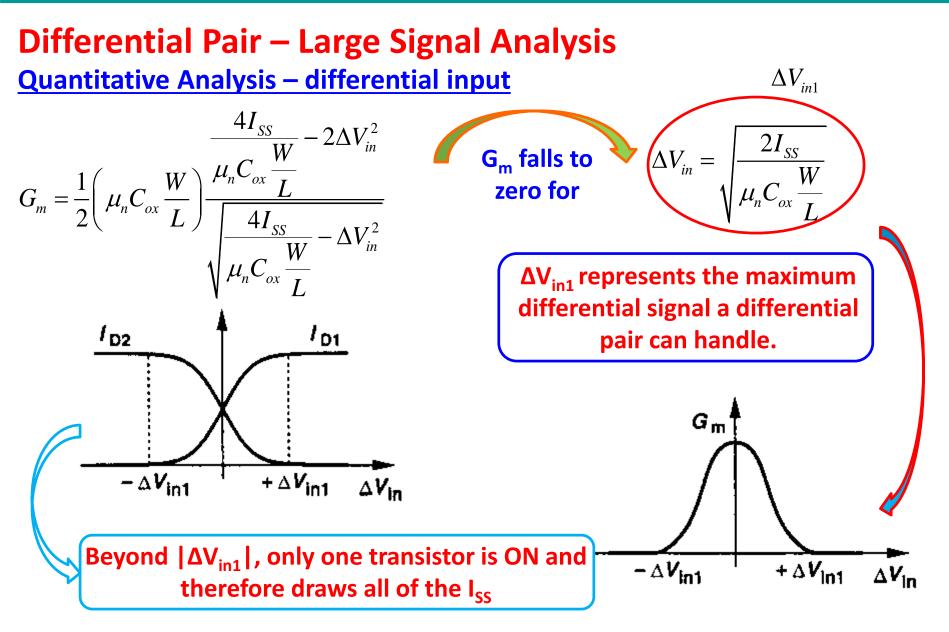
Observations

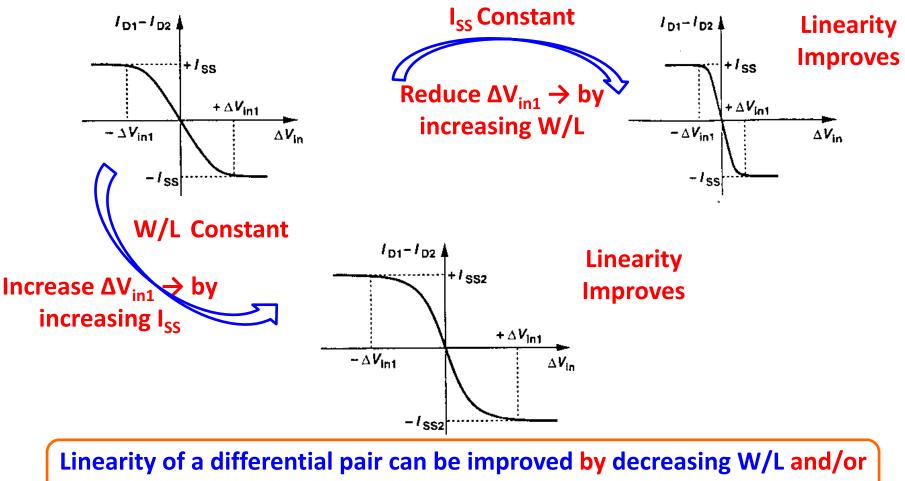
- $I_{D1} I_{D2}$ falls to zero for $V_{in1} = V_{in2}$ and $|I_{D1} I_{D2}|$ increases with increase in $|V_{in1} V_{in2}|$
- Therefore, $I_{D1} I_{D2}$ is an odd function of $V_{in1} V_{in2}$
- Its important to notice that I_{D1} and I_{D2} are even functions of their respective gate-source voltage

• Equivalent G_m of M_1 and $M_2 \rightarrow$ its effectively the slope of the characteristics

Lets denote:
$$I_{D1} - I_{D2} = \Delta I_D$$

 $V_{in1} - V_{in2} = \Delta V_{in}$
 $\Delta I_D = \frac{1}{2} \left(\mu_n C_{ox} \frac{W}{L} \right) \Delta V_{in} \sqrt{\frac{4I_{SS}}{\mu_n C_{ox} \frac{W}{L}} - \Delta V_{in}^2}$
For $\Delta V_{in} = 0$: $G_m = \frac{\partial \Delta I_D}{\partial \Delta V_{in}} = \sqrt{\mu_n C_{ox} \frac{W}{L}} I_{SS}$
Furthermore: $V_{out1} - V_{out2} = R_D \Delta I = R_D G_m \Delta V_{in}$
 $\frac{\partial \Delta I_D}{\partial \Delta V_{in}} = \frac{1}{2} \left(\mu_n C_{ox} \frac{W}{L} \right) \frac{\frac{4I_{SS}}{\mu_n C_{ox} \frac{W}{L}} - 2\Delta V_{in}^2}{\sqrt{\frac{4I_{SS}}{\mu_n C_{ox} \frac{W}{L}} - \Delta V_{in}^2}}$





increasing I_{ss}

MOS Differential Pair – small signal analysis

Quantitative Analysis – differential input

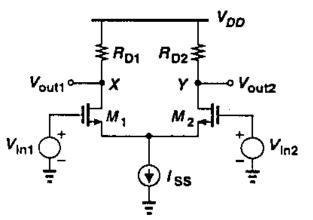
• From large signal analysis we achieved:

$$\therefore |A_{v}| = \frac{V_{out1} - V_{out2}}{\Delta V_{in}} = g_{m}R_{D}$$

$$\therefore |A_{v}| = \frac{V_{out1} - V_{out2}}{\Delta V_{in}} = \left(\mu_{n} C_{ox} \frac{W}{L} I_{SS} R_{D} \right)$$

At equilibrium, this is g_m

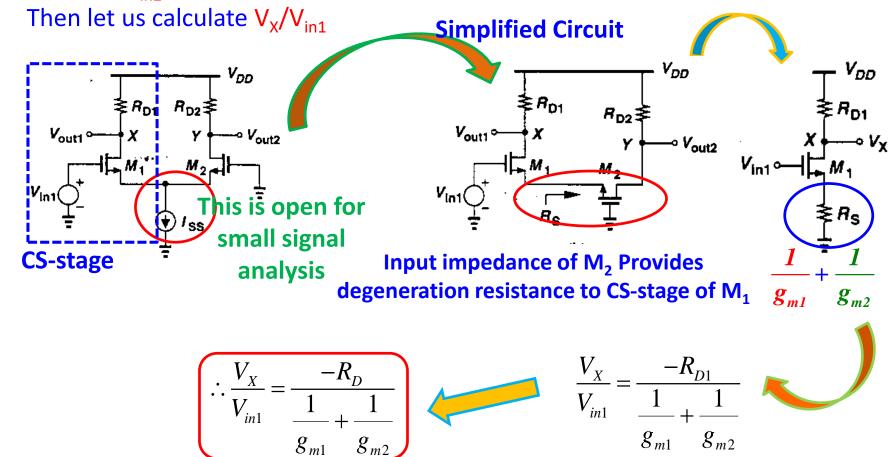
 We apply small signals to V_{in1} and V_{in2} and assume M₁ and M₂ are already operating in saturation.



- How to arrive at this result using small signal analysis?
 - Two techniques
 - Superposition method
 - Half-circuit concept

MOS Differential Pair – small signal analysis

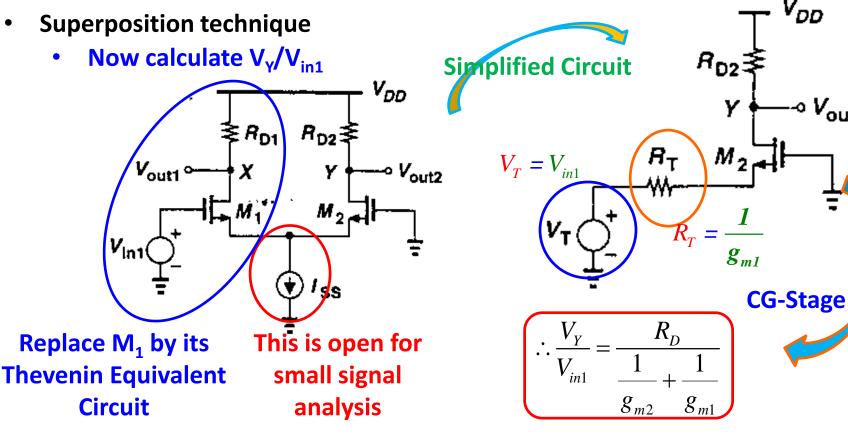
- <u>Method-I</u>: Superposition technique the idea is to see the effect of V_{in1} and V_{in2} on the output and then combine to get the differential small signal voltage gain
- First set, V_{in2} = 0



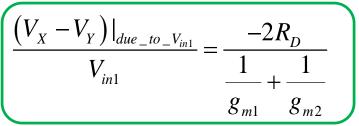
V_{DD}

⊸ V_{out2}

MOS Differential Pair – small signal analysis



combine the expressions to calculate $\left(\frac{(V_X - V_Y)}{|_{due_to_V_{in1}}} \right)$ small signal voltage only due to V_{in1}



MOS Differential Pair – small signal analysis

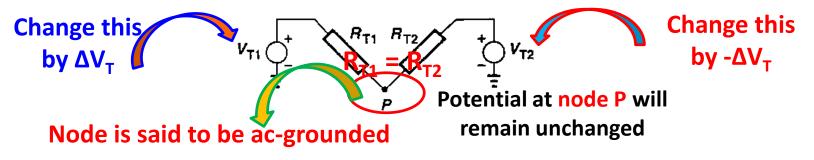
For matched transistors: $(V_X - V_Y)|_{due_to_V_{in1}} = -g_m R_D V_{in1}$

• Similarly:
$$(V_X - V_Y)|_{due_to_V_{in2}} = g_m R_D V_{in2}$$

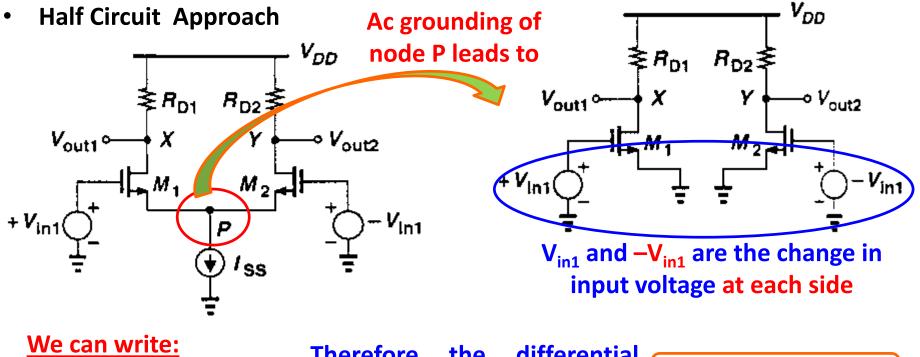
• Superposition gives
$$A_v = \frac{(V_X - V_Y)_{total}}{V_{in2} - V_{in1}} = -g_m R_D$$

- The magnitude of differential gain is g_mR_D regardless of how the inputs are applied
- The gain will be halved if single ended output is considered

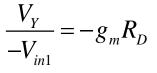
- Half Circuit Approach
 - If a fully symmetric differential pair senses differential inputs (i.e, the two inputs change by equal and opposite amounts from the equilibrium condition), then the concept of half circuit can be applied.



MOS Differential Pair – small signal analysis



 $\frac{V_X}{V_{in1}} = -g_m R_D$



Therefore the differential output can be expressed as:

 $V_X - V_Y = 2V_{in1} \left(-g_m R_D\right)$

Thus the small signal voltage given is:

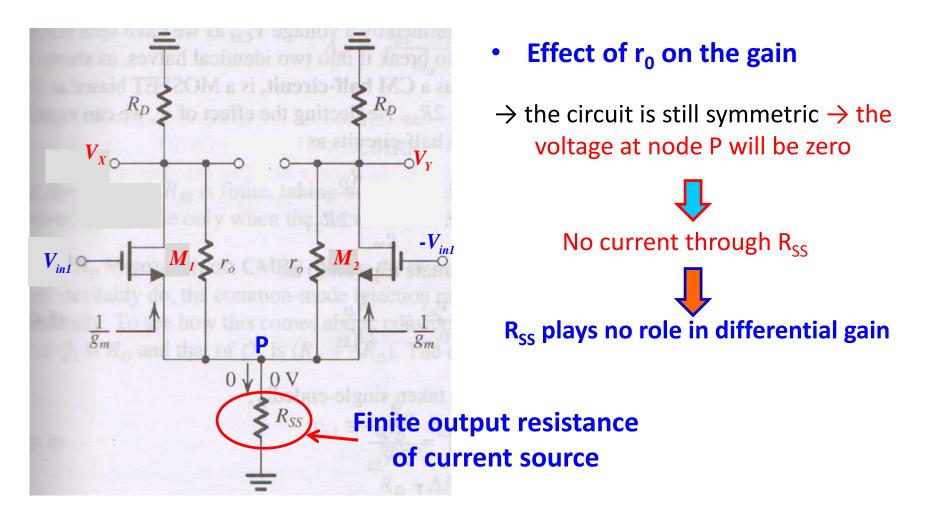
$$A_{v} = \frac{V_{X} - V_{Y}}{2V_{in1}} = -g_{m}R_{D}$$

MOS Differential Pair – small signal analysis

- How does the gain of a differential amplifier compare with a CS stage?
 - For a given total bias current I_{SS} , the value of equivalent g_m of a differential pair is $1/\sqrt{2}$ times that of g_m of a single transistor biased at the I_{SS} with the same dimensions. Thus the total gain is proportionally less.
 - Equivalently, for given device dimensions and load impedance, a differential pair achieves the same gain as a CS stage at the cost of twice the bias current.
- What is the advantage of differential stage then?
 - Definitely the noise suppression capability. Right?

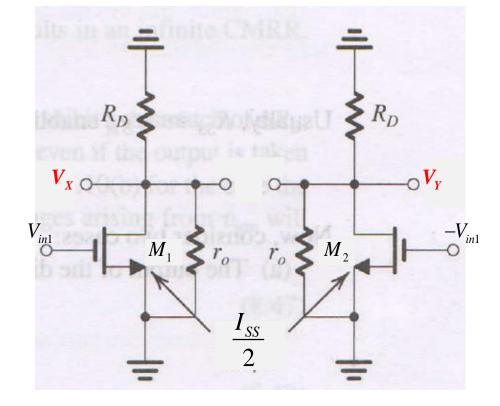
MOS Differential Pair – small signal analysis

• How is gain affected if channel length modulation is considered?



MOS Differential Pair – small signal analysis

 The virtual ground on the source allows division of two identical CS amplifiers: → differential half circuits



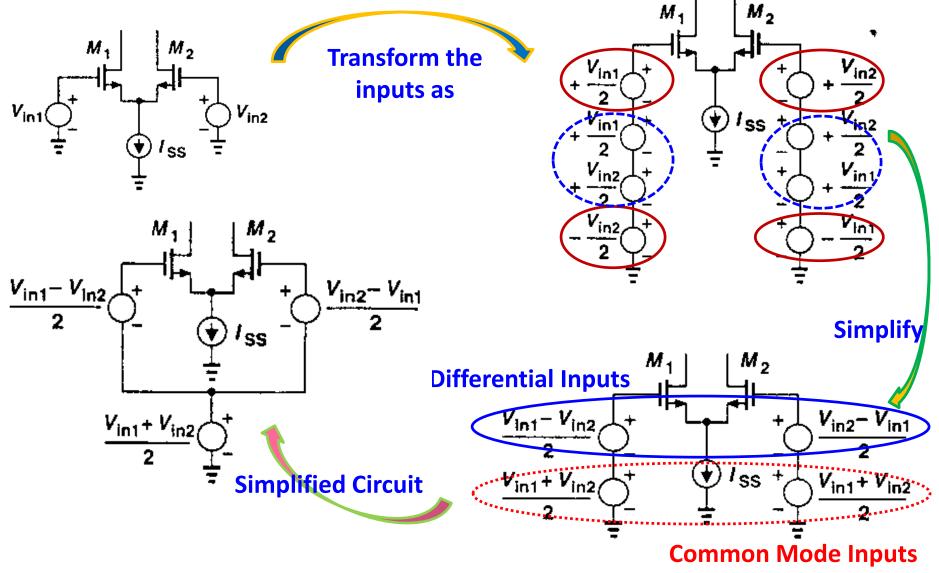
$$V_X = -g_m V_{in1} (R_D \parallel r_o)$$

$$V_Y = g_m V_{in1} \left(R_D \parallel r_o \right)$$

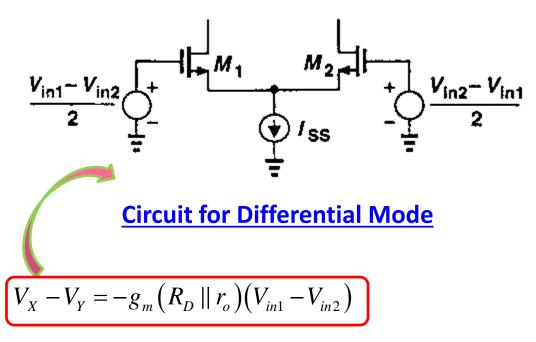
$$\Rightarrow V_X - V_Y = -g_m (2V_{in1}) (R_D \parallel r_o)$$

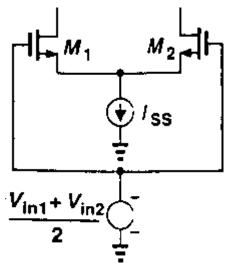
$$\therefore A_{v} = \frac{V_{X} - V_{Y}}{2V_{in1}} = -g_{m} \left(R_{D} \parallel r_{o} \right)$$

Small signal analysis – asymmetric inputs



Small signal analysis – asymmetric inputs





Circuit for Common Mode

If the circuit is fully symmetric and I_{SS} is ideal current source, then M₁ and M₂ draws half of I_{SS} and is independent of V_{in,CM}. The V_x and V_y experience no change as V_{in,CM} varies. In essence, the circuit simply amplifies the difference between V_{in1} and V_{in2} while eliminating the effect of V_{in,CM}.