

<u>Lecture – 10</u>

Date: 12.09.2016

- Differential Amplifier
- Differential Signaling
- Advantage of Differential Signaling
- MOS Differential Pair

Differential Amplifier

- Why differential?
- What do we want from an amplifier?
 - robust operation \rightarrow free from external effects such as noise
 - High output voltage swing \rightarrow optimal headroom / legroom
 - High gain → such as cascode configuration
 - Linear Performance
- Differential amplifiers exhibit/provide following features:
 - robust operation \rightarrow noise do not affect its performance
 - Higher output voltage swing
 - Higher gain in comparison to single-stage amplifiers
 - Linear Performance and simpler biasing

Major Drawback: more area on a chip (however not always true!)

Differential Signaling

Differential amplifier deals with differential signals

Single-ended signals

Differential signals

Defined between two nodes that have equal and opposite signal excursions around a fixed potential

The fixed potential in differential signal is called "common-mode" CM level

Advantages of Differential Signaling

1. Immunity to Environmental Noise

- Line L₁ carries a small and sensitive signal
- Line L₂ carries a large clock waveform
- Due to capacitive coupling between the lines, the transitions on line L₂ corrupt signal on line L₁

- The small and sensitive signal is distributed as two equal and opposite phases
- The clock signal is placed between the two
- The transition disturb the differential phases by equal amounts, leaving the difference intact

Advantages of Differential Signaling

2. Immunity to Supply Noise

If V_{DD} changes by ΔV, V_{out} changes by the same amount.

• Noise in V_{DD} affects V_{χ} and V_{γ} but not $V_{\chi}-V_{\gamma}$

Advantages of Differential Signaling

- 3. <u>Reduction of Coupled Noise</u>
 - Differential signaling can also be employed in noisy lines → for example, distributed clock can help in removing noise from signals

Noise coupled from L_3 to L_1 and L_2 to L_1 cancel each other.

Issues with Differential Signaling

Sensitivity to the Common Mode Level

- Excessive low V_{in,CM} turns off Devices → leads to clipping at the output
- Solution?

Qualitative Analysis – differential input

• Let us check the effect of $V_{in1} - V_{in2}$ variation from $-\infty$ to ∞

- V_{in1} is much more –ve than V_{in2} then:
 - M₁ if OFF and M₂ is ON
 - $I_{D2} = I_{SS}$
 - $V_{out1} = V_{DD}$ and $V_{out2} = V_{DD} I_{SS}R_D$
- V_{in1} is brought closer to V_{in2} then:
 - M₁ gradually turns ON and M₂ is ON
 - Draws a fraction of I_{SS} and lowers V_{out1}
 - I_{D2} decreases and V_{out2} rises

$$V_{in1} = V_{in2}$$

• $V_{out1} = V_{out2} = V_{DD} - I_{SS}R_D/2$

MOS Differential Pair

Qualitative Analysis – differential input

• Let us check the effect of $V_{in1} - V_{in2}$ variation from $-\infty$ to ∞

- V_{in1} becomes more +ve than V_{in2} then:
 - M₁ if ON and M₂ is ON
 - M₁ carries greater I_{ss} than M₂
- For sufficiently large $V_{in1} V_{in2}$:
 - All of the I_{ss} goes through $M_1 \rightarrow M_2$ is OFF
 - $V_{out1} = V_{DD} I_{SS}R_{D}$ and $V_{out2} = V_{DD}$

MOS Differential Pair

<u>Qualitative Analysis – differential input</u>

Plotting V_{out1} – V_{out2} versus V_{in1} – V_{in2}

The maximum and minimum levels at the output are well defined and is independent of input CM level (V_{in,cm})

The circuit becomes more nonlinear as the input voltage swing increases (i.e., $V_{in1} - V_{in2}$ increases) \leftrightarrow at $V_{in1} = V_{in2}$, the circuit is said to be in equilibrium

<u>Qualitative Analysis – common mode input</u>

• Now let us consider the common mode behavior of the circuit

<u>Qualitative Analysis – common mode input</u>

- What happens when V_{in,CM} = 0?
 - M₁ and M₂ will be OFF and M₃ can be in <u>triode</u> for high enough V_b
 - I_{D1} = I_{D2} = 0 ← circuit is incapable of amplification

- Now suppose V_{in,CM} becomes more +ve
 - M_1 and M_2 will turn ON if $V_{in,CM}$ exceeds V_T
 - I_{D1} and I_{D2} will continue to rise with the increase in $V_{in,CM}$
 - V_P will track $V_{in,CM}$ as M_1 and M_2 work like a source follower
 - For high enough $V_{in,CM}$, M_3 will be in saturation as well
- If V_{in,CM} rises further
 - M_1 and M_2 will remain in saturation if:

Qualitative Analysis – common mode input

• For M₁ and M₂ to remain in saturation:

$$V_{GS1,2} - V_T \le V_{DS1,2} \qquad \Rightarrow V_{in,CM} - V_T \le V_{DD} - \frac{I_{SS}}{2}R_D \qquad \Rightarrow V_{in,CM} \le V_T + V_{DD} - \frac{I_{SS}}{2}R_D$$
$$\therefore (V_{in,CM})_{\max} = V_T + V_{DD} - \frac{I_{SS}}{2}R_D$$

The lowest value of V_{in,CM} is determined by the need to keep the constant current source operational:

$$V_{in,CM} - V_{GS1,2} \ge V_{GS3} - V_T$$
$$\Rightarrow V_{in,CM} \ge V_{GS1,2} + (V_{GS3} - V_{T3})$$

$$V_{GS1,2} + (V_{GS3} - V_T) \le V_{in,CM} \le \min\left[V_{DD} - \frac{I_{SS}}{2}R_D + V_T, V_{DD}\right]$$

MOS Differential Pair

<u>Qualitative Analysis – common mode input</u>

• Thus, V_{in,CM} is bounded as:

$$V_{GS1,2} + (V_{GS3} - V_T) \le V_{in,CM} \le \min\left[V_{DD} - \frac{I_{SS}}{2}R_D + V_T, V_{DD}\right]$$

• Summary:

