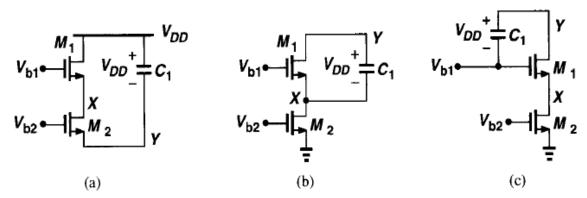
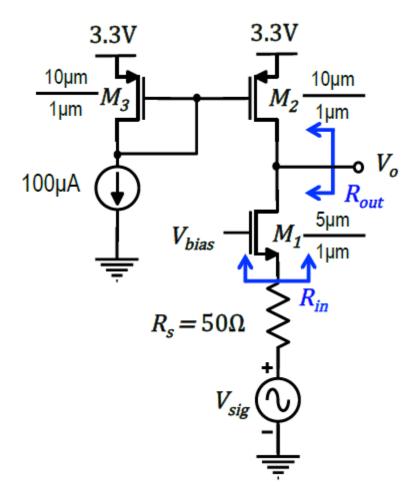

ASSIGNMENT #3

All simulations need to be done in ELDO


Submission Date #8/09/2017

Q.1



- a.) Derive the expression for mid-band gain V_0/V_i ?
- b.) Given R_{in} = 100K Ω , g_m = 4mA/V , R_L = 5K Ω , calculate the low frequency gain ~A, 3- dB frequency w_H , and gain- bandwidth product GBW = $|Aw_H|$ for R_s = 0 , 100 , 250 Ω , respectively.
- c.) Simulate in ELDO using 130nm PTM file and compare the results.

Q.2 For the given circuit plot V_X and V_Y , Considering initial voltage across $C_1 = V_{DD} = 2v$ using 130nm PTA file.

- Q.3 Design a common source amplifier :
- a.) Giving a gain of appx. 4, using 130 PTM file, you can choose any design for this implementation along with the value of resistances and capacitances as needed.
- b.) Vary the value of R_D and R_S and show its effect on the V_{OUT} (min. 3 variations).
- Q.4 For the transistor in the amplifier , V_{tp} = -0.8V .The small signal source V_{sig} is a small sinusoidal signal with no DC component. ($simulate\ in\ ELDO$)
- a.) Neglecting the channel length modulation , design the value of $V_{\text{bias}}\,$ such that the output swing is maximum.
- b.) How large the V_{swing} peak-to-peak value while M₁ and M₂ stay in saturation?

