Class Test - 1
 Date: 17.08.2015
 Time: 20 minutes

A strange, two-terminal device has the following relationship between the current through it (i) and the voltage across it (v) :

$$
i=4 v+v^{2}
$$

where v is in volts and i in $\mathbf{m A}$.

We can define the small-signal resistance $r_{s s}$ of this device as:

$$
r_{s s}=\frac{v_{s s}}{i_{s s}}
$$

where $V_{s s}$ is the small-signal voltage across the device and $i_{s s}$ is the small-signal current through it.
a) Determine the value of this small-signal resistance $r_{s s}$ if the DC voltage across the device is $V=3.0 \mathrm{~V}$
b) Determine the small-signal voltage $\boldsymbol{v}_{s s}(t)$ across this device if the DC voltage across it is 3.0 V , and the small-signal current $i_{s s}$ through it is:

$$
i_{s s}(t)=0.2 \cos \omega t \mathrm{~mA}
$$

