

Lecture – 9 Date: 03.09.2015

• Biasing in MOS Amplifier Circuits

Biasing using Single Power Supply

The general form of a **single**-supply MOSFET amplifier biasing circuit is:

We typically attempt to satisfy three main bias design goals:

1) Maximize Gain

Typically, the small-signal **voltage gain** of a MOSFET amplifier will be proportional **Solution 19.13**
 Solution 19.13
 Conduct Splerify Arec

main bias design goals:
 1) Maximize Gain

Typically, the small-signal **voltage gain** of

a MOSFET amplifier will be proportional

to transconductance g_m .

 $A_{\scriptscriptstyle c} \propto g_{\scriptscriptstyle m}$

Thus, to maximize the amplifier voltage gain, we must **maximize** the MOSFET transconductance.

- **Q:** What does this have to do with **D.C. biasing?**
- **A:** Recall that the transconductance depends on the **DC excess gate voltage**:

 $g_m = 2K(V_{GS} - V_T)$

- Another way to consider transconductance is to express it in terms of DC drain current I_D .
- Recall this DC current is related to the DC excess gate voltage (in saturation!) as:

$$
\mathcal{I}_{D} = K (V_{GS} - V_{T})^{2} \qquad \Rightarrow \qquad (V_{GS} - V_{T}) = \sqrt{\frac{I_{D}}{K}}
$$

And so transconductance can be alternatively expressed as:

$$
g_m = 2K(V_{GS} - V_T) = 2K\sqrt{\frac{I_D}{K}} = 2\sqrt{KT_D}
$$

• Therefore, the amplifier voltage gain is typically **proportional** to the square-root of the DC drain current:

$$
A \propto \sqrt{I_D}
$$

To maximize A_{ν} , maximize I_D

2) Maximize Voltage Swing

Recall that if the DC drain voltage V_D is biased too close to V_{DD} , then even a small **small-signal** drain voltage $v_d(t)$ can result in a **total** drain voltage that is too **large**, i.e.:

 $V_{0}(t) = V_{0} + V_{d}(t) \geq V_{0}$

In other words, the MOSFET enters **cutoff**, and the result is a **distorted** signal!

- To avoid this (to allow $v_d(t)$ to be as large as possible without MOSFET entering cutoff), we need to bias our MOSFET such that the DC drain voltage V_D is as **small** as possible.
- Note that the drain voltage is: $V_{D} = V_{DD} R_{D} I_{D}$
- Therefore V_D is minimized by designing the bias circuit such that the DC drain current I_D is as **large** as possible.
- However, we must **also** consider the signal distortion that occurs when the MOSFET enters **triode**. This of course is avoided if the total drain-tosource voltage remains greater than the excess gate voltage, i.e.:

$$
v_{DS}(t) = V_{DS} + v_{ds}(t) > (V_{GS} - V_{T})
$$

• Thus, to avoid the MOSFET triode mode—and the resulting signal distortion—we need to bias our MOSFET such that the DC voltage is as **large** as possible.

To minimize signal distortion, maximize V_{DS}

3) Minimize Sensitivity to changes in K **,** V_T

- We find that MOSFETs are **sensitive** to temperature—specifically, the value of K is a function of temperature.
- Likewise, the values of K and V_T are not particularly constant with regard to the manufacturing process.
- Both of these facts lead to the requirement that our bias design be **insensitive** to the values of K and V_T . Specifically, we want to design the bias network such that the DC bias current does **not** change values when K and/or V_T does.
- **Mathematically,** we can express this requirement as minimizing the value:

$$
\frac{d\,I_{\scriptscriptstyle D}}{dK} \quad \text{and} \quad \frac{d\,I_{\scriptscriptstyle D}}{dV_{\scriptscriptstyle T}}
$$

• These derivatives can be minimized by maximizing the value of **source resistor** $R_{\mathcal{S}}$.

- So, let's **recap** what we have learned about designing our bias network:
	- **1.** Make I_D as large as possible.
	- **2.** Make V_{DS} as large as possible.
	- **3.** Make R_S as large as possible.

Actually these three goals are conflicting, as they are constrained by the KVL equation of the bias circuit.

Example – 1

• If the MOSFET has device values $K =$ 1.0 $\binom{mA}{V^2}$ and $V_T = 1.0V$, determine the resistor values to bias this MOSFET with a DC drain current of $I_D = 4.0 mA$.

ECE315 / ECE515

The MOSFET Current Mirror

- Consider the following MOSFET circuit:
	- Note $V_D = V_G$, therefore: $V_{DS} = V_{GS}$

• and thus:
$$
V_{DS} = V_{GS}
$$

- The MOSFET is in saturation if $V_G > V_T$.
- We know that for a MOSFET in saturation, the drain current is:

═ $\mathcal{I}_D = \mathcal{K}\left(\mathcal{V}_{GS} - \mathcal{V}_{\tau}\right)^2$

Say we want this current I_D to be a **specific** value—call it I_{ref} .

K

Since $V_s = 0$, we find that from the above equation, the $V_b = \sqrt{\frac{F_{ref}}{K}} + V_T$
drain voltage must be: $V_{D} = \sqrt{\frac{I_{ref}}{V}} + V_{T}$

Likewise, from KVL we find that:

$$
I_{ref} = \frac{V_{DD} - V_D}{R}
$$
cc

• And thus the **resistor** value to achieve the desired drain current I_{ref} is: $\begin{array}{ccc} & V & \ \end{array}$ $=$ $\frac{VDD}{D}$ $R = \frac{V_{DD} - V_D}{V}$

$$
R = \frac{U}{L_{ref}}
$$

where:
$$
V_D = \sqrt{\frac{I_{ref}}{K} + V_T}
$$

Q: Why are we doing this?

 $I_{\text{ref}} = \frac{V_{DD} - V_D}{V}$ component to the circuit, with a *R* second MOSFET that is **identical** to **A:** Say we now add another the first :

Q: So what is current I_L ?

The drain current I_L is:

A: Note that the gate voltage of each MOSFET is the same (i.e., $V_{GS1} = V_{GS2}$), and if the MOSFETS are the **same** (i.e., $K_1 = K_2$, $V_{T1} = V_{T2}$), and if the second MOSFET is likewise in **saturation.**

$$
\mathbf{I}_{L} = \mathbf{K}_{2} (V_{G52} - V_{T2})^{2}
$$

= $\mathbf{K}_{1} (V_{G51} - V_{T1})^{2} = \mathbf{I}_{ref}$

Therefore, the drain current of the **second** MOSFET is **equal** to the current of the **first**!

 $=$ K_{1} | V_{cct} = $\mathsf{V}_{\tau1}$ | $=$ L_{mct}

Q: Wait a minute! You mean to say that the current through the resistor R_L is **independent** of the value of resistor R_L?

A: Absolutely! As long as the second MOSFET is in **saturation**, the current through *R^L* is equal to *I ref*—**period**.

• The current through R_L is independent of the value of R_L (provided that the MOSFET remains in saturation). Think about what this means—this device is a **current source** !

Remember, the second MOSFET **must** be in saturation for the current through *R^L* to be a constant value I_{ref} . As a result, we find that: **CE315** / **ECE515**
 irror (contd.)

• Remember, the second MOSFET

must be in saturation for the current

through R_t to be a constant value
 I_{ref} . As a result, we find that:
 $V_{0s2} > V_{6s2} - V_{T2}$

For this example:

$$
V_{DS2} > V_{GS2} - V_{T2}
$$

• For this example:
$$
V_{D2} > V_{G2} - V_{T2}
$$

- Since $V_{D2} = V_{DD} R_L I_{ref}$, we find that $V_{DD} R_L I_{ref} > V_{G2} V_{T2} = V_{G1} V_{T1}$ the MOSFET will be in saturation if:
	- Alternatively, we find the limitation on the load resistor R_i :

$$
V_{DS2} > V_{GS2} - V_{T2}
$$

$$
R_{\text{L}}\ < \frac{V^{}_{\text{DD}}\ -V^{}_{\text{G1}}\ +V^{}_{\text{T1}}}{\mathcal{I}^{}_{ref}}
$$

• We know that: $V_{G1} = V_{DD} - R I_{ref}$

• Thus we can alternatively write the above equation as: *V*

$$
\mathcal{R}_{\mathcal{L}} < \mathcal{R} + \frac{\mathcal{V}_{\tau\,1}}{\mathcal{I}_{ref}}
$$

- If the **load** resistor becomes larger than $R + {}^{V_{T1}}/_{I_{ref}}$, the voltage V_{DS2} will drop **below** the excess gate voltage $V_{GS2} - V_{T2}$, and thus the second MOSFET will enter the **triode** region. As a result, the drain current will **not** equal I_{ref} —the current source will **stop working**!
- Although the circuit presented here is sometimes referred to as a current **sink**, understand that the circuit is clearly a way of designing a **current source**.

We can also use **PMOS** devices to construct a current mirror!

MOSFET Biasing using Current Mirror

We can bias a MOSFET amplifier using a **current source** as:

It is evident that the DC drain current I_{D} , is equal to the current source *I*, **regardless** of the MOSFET values *K* or $V_T!$

Thus, this bias design maximizes drain current **stability**!

We now know how to implement this bias design with MOSFETs—we use the **current mirror** to construct the current source!

• Since $I_D = I$, it is evident that V_{GS} must be equal to:

$$
V_{GS} = \sqrt{\frac{T}{K}} + V_T
$$

• Since the DC **gate** voltage is:

$$
V_{G} = V_{DD} \left(\frac{R_{2}}{R_{1} + R_{2}}\right)
$$

• Therefore:

$$
V_{S} = V_{G} - V_{GS}
$$

= $V_{DD} \left(\frac{R_{2}}{R_{1} + R_{2}} \right) - \left(\sqrt{\frac{T}{K}} + V_{T} \right)$

- Since we are biasing with a current source, we do **not** need to worry about drain current **stability**—the current source will determine the DC drain current for **all** conditions (i.e., $I_D = I$).
- We might conclude, therefore, that we should make DC source voltage V_s as **small** as possible. After all, this would allow us to **maximize** the output voltage swing (i.e., maximize $I_p R_p$ and V_{DS}). **5**
 ontd.)

P., we do **not** need to worry

ource will determine the DC

Id make DC source voltage V_s

I allow us to **maximize** the

nd V_{DS}).

f the MOSFET is numerically

₅₂) of the second MOSFET of
 $-V_{r2} = V_{65$ **15**
 Contd.)

ce, we do **not** need to w

source will determine th

.

uld make DC source volta_i

ld allow us to **maximize**

and V_{DS}).

of the MOSFET is numeri
 V_{DS2}) of the second MOSFE
 $V_{DS2} - V_{r2} = V_{651} - V_{r$ **S15**
 Contd.)
 Gontd.
 Gontd.
 Gonter and *Gonding* the DC
 *Gonter will determine the DC

<i>I*).
 Gonding Mosicing
 Gonding
 V_{DS2}) of the second MOSFET of
 V_{DS2}) of the second MOSFET of
 Gonding
 D
 DD not need to worry

vill determine the DC

DC source voltage V_s

us to **maximize** the

OSFET is numerically

ne second MOSFET of
 $S_1 - V_{r_1}$
 $S_2 - I_{ref}R$) – V_{r_1}

main in **saturation**. **ESIS**
 V (contd.)

viewere, we do not need to worry

ent source will determine the DC

Fig. 1.

Should make DC source voltage V_S

vould allow us to maximize the
 R_D and V_{DS} .
 V_S of the MOSFET is numerically
 V
V I Read to Worry
will determine the DC
is DC source voltage V_s
v us to **maximize** the
interaction.
MOSFET is numerically
the second MOSFET of
 $V_{651} - V_{r1}$
 $V_{bb} - T_{ref}R$)- V_{r1}
emain in saturation.
- Note however, that the **source** voltage V_s of the MOSFET is numerically equal to the **drain** voltage V_{D2} (and thus V_{D52}) of the second MOSFET of the **current mirror**.

Q: So what?!

A: The voltage must be **greater** than:

$$
V_{GS2} - V_{T2} = V_{GS1} - V_{T1}
$$

= $(V_{DD} - I_{ref}R) - V_{T1}$

in order for the **second** MOSFET to remain in **saturation**.

There is a **minimum voltage** across the current source in order for the current source to properly operate!

• Thus, to maximize output swing, we **might** wish to set:

$$
V_{S} = V_{GS1} - V_{T1}
$$

(although to be practical, we should make V_s **slightly greater** than this to allow for some design **margin**).

Q: How do we "set" the DC **source** voltage V_s ??

A: By setting the DC gate voltage V_G !!

- Recall that the DC voltage V_{GS} is determined by the DC current source value **I***:*
- and the DC gate voltage is determined by the **two** resistors R_1 and R_2 :
- Thus, we should **select** these resistors such that:
	- **Q:** So what should the value of resistor R_D be?
	- **A:** Recall that we should set the DC **drain** voltage V_D :
		- a) much **less** than V_{DD} to avoid **cutoff**.
		- b) much **greater** than $V_G V_T$ to avoid **triode**.

$$
V_{G} = V_{GS} + V_{S}
$$

= $\left(\sqrt{\frac{T}{K}} + V_{T}\right) + \left(V_{GS1} - V_{T1}\right)$

 K ¹ $\frac{1}{2}$ $\frac{1}{2}$

$$
V_{GS} = \sqrt{\frac{I}{K}} + V_T
$$

$$
V_{\text{G}} = V_{\text{DD}} \left(\frac{R_{\text{2}}}{R_{\text{1}} + R_{\text{2}}} \right)
$$

• Thus, we **compromise** by setting the DC drain voltage to a point **halfway** in between!

$$
V_{D} = \frac{V_{DD} + (V_{G} - V_{T})}{2}
$$

• To achieve this, we must select the drain **resistor** R_D so that:

$$
R_{D} = \frac{V_{DD} - V_{D}}{T_{D}} = \frac{V_{DD} - (V_{G} - V_{T})}{T_{D}}
$$

ECE315 / ECE515

Example – 2

Let's determine the proper resistor values to DC bias this MOSFET. The current source is 5.0 mA and has a minimum voltage of 2.0 Volts in order to operate properly

Since $I = I_D = 5 mA$, we know that the value of V_{GS} should be:

$$
V_{GS} = \sqrt{\frac{T}{K}} + V_{T}
$$

$$
= \sqrt{\frac{5.0}{0.2}} + 1.0
$$

$$
= 6.0 \text{ V}
$$

• Assuming that we want the DC source voltage to be the minimum value of $V_s = 2.0V$, we need for the DC gate voltage to be:

$$
V_G = V_{GS} + V_S
$$

= 6.0 + 2.0
= 8.0 V

ECE315 / ECE515

 $1'$ 2

*R*_{*x*} + *R*_{*x*} +

Example

- Thus, we need to select resistors R_1 and R_2 so that: $V_c = 8.0 = V_{DD} \left(\frac{R_2}{R_1 + R_2} \right)$ $=8.0 = V_{DD} \left(\frac{R_2}{R_1 + R_2}\right)$ $V_{\beta} = 8.0 = V_{\beta D} \left(\frac{R_{2}}{R_{2}} \right)$
- or in other words, we want:

ECE315 / ECE515
\n**Example – 2 (contd.)**
\nThus, we need to select resistors
$$
R_1
$$
 and R_2 so that: $V_6 = 8.0 = V_{00} \left(\frac{R_2}{R_1 + R_2}\right)$
\nor in other words, we want: $\left(\frac{R_2}{R_1 + R_2}\right) = \frac{8.0}{15.0}$
\n• Since we can make R_1 and R_2 large, let's assume that we want:
\nSo that $R_1 = 140 k\Omega$ and $R_2 = 160 k\Omega$.

So that $R_1 = 140 k\Omega$ and $R_2 = 160 k\Omega$.

- Finally, we want the DC drain voltage to be:
	- So that the resistor is:

$$
P_{D} = \frac{V_{DD} - V_{D}}{I_{D}}
$$

=
$$
\frac{15.0 - 11.0}{5.0}
$$

= 0.8 K_Ω

$$
\begin{aligned}\n\text{train voltage to be:} \qquad V_b &= \frac{V_{\text{DD}} + (V_{\text{G}} - V_{\text{T}})}{2} \\
R_b &= \frac{V_{\text{DD}} - V_{\text{D}}}{I_{\text{D}}} \\
\text{15.0 + (8.0 - 1.0)} \\
\text{15.0
$$

$$
\left(\frac{R_2}{R_1+R_2}\right) = \frac{8.0}{15.0}
$$

$$
R_1 + R_2 = 300
$$

$$
e-2 (contd.)
$$

Example – 2 (contd.)

