

Date: 03.09.2015

Lecture – 9

Biasing in MOS Amplifier Circuits

Biasing using Single Power Supply

 The general form of a single-supply MOSFET amplifier biasing circuit is:

 We typically attempt to satisfy three main bias design goals:

1) Maximize Gain

Typically, the small-signal **voltage gain** of a MOSFET amplifier will be proportional to transconductance g_m .

$$A_{\rm m} \propto g_{\rm m}$$

Thus, to maximize the amplifier voltage gain, we must **maximize** the MOSFET transconductance.

Biasing using Single Power Supply (contd.)

Q: What does this have to do with **D.C. biasing?**

A: Recall that the transconductance depends on the **DC excess gate voltage**:

$$g_{\mathsf{m}} = 2 K \left(V_{\mathsf{GS}} - V_{\mathsf{T}} \right)$$

- Another way to consider transconductance is to express it in terms of DC drain current I_D .
- Recall this DC current is related to the DC excess gate voltage (in saturation!) as:

$$I_D = K (V_{GS} - V_T)^2$$
 \Rightarrow $(V_{GS} - V_T) = \sqrt{\frac{I_D}{K}}$

And so transconductance can be alternatively expressed as:

$$g_{m} = 2K(V_{GS} - V_{T}) = 2K\sqrt{\frac{I_{D}}{K}} = 2\sqrt{KI_{D}}$$

Biasing using Single Power Supply (contd.)

• Therefore, the amplifier voltage gain is typically **proportional** to the square-root of the DC drain current:

$$A \propto \sqrt{I_D}$$

To maximize A_{v} , maximize I_{D}

2) Maximize Voltage Swing

Recall that if the DC drain voltage V_D is biased too close to V_{DD} , then even a small **small-signal** drain voltage $v_d(t)$ can result in a **total** drain voltage that is too **large**, i.e.:

$$V_D(t) = V_D + V_d(t) \geq V_{DD}$$

In other words, the MOSFET enters **cutoff**, and the result is a **distorted** signal!

Biasing using Single Power Supply (contd.)

- To avoid this (to allow $v_d(t)$ to be as large as possible without MOSFET entering cutoff), we need to bias our MOSFET such that the DC drain voltage V_D is as **small** as possible.
- Note that the drain voltage is: $V_D = V_{DD} R_D I_D$
- Therefore V_D is minimized by designing the bias circuit such that the DC drain current I_D is as **large** as possible.
- However, we must **also** consider the signal distortion that occurs when the MOSFET enters **triode**. This of course is avoided if the total drain-to-source voltage remains greater than the excess gate voltage, i.e.:

$$V_{DS}(t) = V_{DS} + V_{ds}(t) > (V_{GS} - V_{T})$$

 Thus, to avoid the MOSFET triode mode—and the resulting signal distortion—we need to bias our MOSFET such that the DC voltage is as large as possible.

To minimize signal distortion, maximize V_{DS}

Biasing using Single Power Supply (contd.)

- 3) Minimize Sensitivity to changes in K, V_T
 - We find that MOSFETs are **sensitive** to temperature—specifically, the value of K is a function of temperature.
 - Likewise, the values of K and V_T are not particularly constant with regard to the manufacturing process.
 - Both of these facts lead to the requirement that our bias design be **insensitive** to the values of K and V_T . Specifically, we want to design the bias network such that the DC bias current does **not** change values when K and/or V_T does.
 - Mathematically, we can express this requirement as minimizing the value: $\frac{d I_D}{dK}$ and $\frac{d I_D}{dV_T}$
 - These derivatives can be minimized by maximizing the value of **source** resistor R_S .

Biasing using Single Power Supply (contd.)

- So, let's recap what we have learned about designing our bias network:
 - **1.** Make I_D as large as possible.
 - **2.** Make V_{DS} as large as possible.
 - **3.** Make R_S as large as possible.

Actually these three goals are conflicting, as they are constrained by the KVL equation of the bias circuit.

Biasing using Single Power Supply (contd.)

Maximize A_v by maximizing this term.

Minimize distortion by **maximizing** this term.

<u>or</u>

$$I_D R_D + V_{DS} + I_D R_S = V_{DD}$$

But the **total** of the three terms must equal this!

Minimize sensitivity by **maximizing** this term.

Example - 1

• If the MOSFET has device values $K=1.0\ ^{mA}/_{V^2}$ and $V_T=1.0V$, determine the resistor values to bias this MOSFET with a DC drain current of $I_D=4.0mA$.

The MOSFET Current Mirror

Consider the following MOSFET circuit:

- Note $V_D = V_G$, therefore: $V_{DS} = V_{GS}$
- and thus: $V_{DS} = V_{GS}$
- The MOSFET is in saturation if $V_G > V_T$.
- We know that for a MOSFET in saturation, the drain current is:

$$I_{D} = K (V_{GS} - V_{T})^{2}$$

Say we want this current I_D to be a **specific** value—call it I_{ref} .

Since $V_S = 0$, we find that from the above equation, the $V_D = \sqrt{\frac{I_{ref}}{K}} + V_T$ drain voltage must be:

The MOSFET Current Mirror (contd.)

 Likewise, from KVL we find that:

$$I_{ref} = \frac{V_{DD} - V_{D}}{R}$$

 And thus the resistor value to achieve the desired drain current

$$I_{ref}$$
 is: $oldsymbol{R} = rac{oldsymbol{V_{DD}} - oldsymbol{V_{D}}}{oldsymbol{I_{ref}}}$

where:
$$V_D = \sqrt{\frac{I_{ref}}{K}} + V_T$$

Q: Why are we doing this?

A: Say we now add another component to the circuit, with a second MOSFET that is **identical** to the first:

The MOSFET Current Mirror (contd.)

Q: So what is current I_L ?

A: Note that the gate voltage of each MOSFET is the **same** (i.e., $V_{GS1} = V_{GS2}$), and if the MOSFETS are the **same** (i.e., $K_1 = K_2$, $V_{T1} = V_{T2}$), and if the second MOSFET is likewise in **saturation**.

• The drain current I_L is:

$$I_{L} = K_{2} \left(V_{GS2} - V_{T2} \right)^{2}$$
$$= K_{1} \left(V_{GS1} - V_{T1} \right)^{2} = I_{ref}$$

Therefore, the drain current of the **second** MOSFET is **equal** to the current of the **first**!

$$I_{ref} = I_{l}$$

Q: Wait a minute! You mean to say that the current through the resistor R_L is **independent** of the value of resistor R_I ?

A: Absolutely! As long as the second MOSFET is in **saturation**, the current through R_L is equal to I_{ref} —**period**.

The MOSFET Current Mirror (contd.)

• The current through R_L is independent of the value of R_L (provided that the MOSFET remains in saturation). Think about what this means—this device is a **current source**!

The MOSFET Current Mirror (contd.)

• Remember, the second MOSFET **must** be in saturation for the current through R_L to be a constant value I_{ref} . As a result, we find that:

$$V_{DS2} > V_{GS2} - V_{T2}$$

For this example: $V_{D2} > V_{G2} - V_{T2}$

- Since $V_{D2}=V_{DD}-R_LI_{ref}$, we find that $V_{DD}-R_LI_{ref}>V_{G2}-V_{T2}=V_{G1}-V_{T1}$ the MOSFET will be in saturation if:
 - Alternatively, we find the limitation on the load resistor R_i :

$$V_{DS2} > V_{GS2} - V_{T2}$$

The MOSFET Current Mirror (contd.)

$$R_L < rac{V_{DD} - V_{G1} + V_{T1}}{I_{ref}}$$

- We know that: $V_{G1} = V_{DD} R I_{ref}$
- Thus we can alternatively write the above equation as:

 $R_L < R + \frac{V_{T1}}{I_{ref}}$

- If the **load** resistor becomes **larger** than $R + \frac{V_{T1}}{I_{ref}}$, the voltage V_{DS2} will drop **below** the excess gate voltage $V_{GS2} V_{T2}$, and thus the second MOSFET will enter the **triode** region. As a result, the drain current will **not** equal I_{ref} —the current source will **stop working**!
- Although the circuit presented here is sometimes referred to as a current sink, understand that the circuit is clearly a way of designing a current source.

The MOSFET Current Mirror (contd.)

We can also use PMOS devices to construct a current mirror!

MOSFET Biasing using Current Mirror

 We can bias a MOSFET amplifier using a current source as:

It is evident that the DC drain current I_D , is equal to the current source I, regardless of the MOSFET values K or V_T !

Thus, this bias design maximizes drain current **stability**!

MOSFET Biasing using Current Mirror (contd.)

 We now know how to implement this bias design with MOSFETs—we use the current mirror to construct the current source!

• Since $I_D = I$, it is evident that V_{GS} must be equal to:

$$V_{GS} = \sqrt{\frac{I}{K}} + V_{T}$$

• Since the DC gate voltage is:

$$V_G = V_{DD} \left(\frac{R_2}{R_1 + R_2} \right)$$

• Therefore:

$$V_{S} = V_{G} - V_{GS}$$

$$= V_{DD} \left(\frac{R_{2}}{R_{1} + R_{2}} \right) - \left(\sqrt{\frac{I}{K}} + V_{T} \right)$$

MOSFET Biasing using Current Mirror (contd.)

- Since we are biasing with a current source, we do **not** need to worry about drain current **stability**—the current source will determine the DC drain current for **all** conditions (i.e., $I_D = I$).
- We might conclude, therefore, that we should make DC source voltage V_S as **small** as possible. After all, this would allow us to **maximize** the output voltage swing (i.e., maximize I_DR_D and V_{DS}).
- Note however, that the **source** voltage V_S of the MOSFET is numerically equal to the **drain** voltage V_{D2} (and thus V_{DS2}) of the second MOSFET of the **current mirror**.

Q: So what?!

A: The voltage must be greater than: $V_{GS2} - V_{T2} = V_{GS1} - V_{T1} = (V_{DD} - I_{ref}R) - V_{T1}$

in order for the **second** MOSFET to remain in **saturation**.

MOSFET Biasing using Current Mirror (contd.)

There is a **minimum voltage** across the current source in order for the current source to properly operate!

• Thus, to maximize output swing, we **might** wish to set:

$$V_S = V_{GS1} - V_{T1}$$

(although to be practical, we should make V_S slightly greater than this to allow for some design margin).

Q: How do we "set" the DC source voltage V_S ?

A: By setting the DC gate voltage $V_G!!$

MOSFET Biasing using Current Mirror (contd.)

• Recall that the DC voltage V_{GS} is determined by the DC current source value **I**:

$$V_{GS} = \sqrt{\frac{I}{K}} + V_{T}$$

• and the DC gate voltage is determined by the **two** resistors R_1 and R_2 :

$$V_G = V_{DD} \left(\frac{R_2}{R_1 + R_2} \right)$$

• Thus, we should **select** these resistors such that:

$$V_{G} = V_{GS} + V_{S}$$

$$= \left(\sqrt{\frac{I}{K}} + V_{T}\right) + \left(V_{GS1} - V_{T1}\right)$$

 \mathbf{Q} : So what should the value of resistor $\mathbf{R}_{\mathbf{D}}$ be?

A: Recall that we should set the DC drain voltage V_D :

- a) much **less** than V_{DD} to avoid **cutoff**.
- b) much greater than $V_G V_T$ to avoid triode.

MOSFET Biasing using Current Mirror (contd.)

Thus, we compromise by setting the DC drain voltage to a point halfway
in between!

$$V_D = \frac{V_{DD} + (V_G - V_T)}{2}$$

• To achieve this, we must select the drain **resistor** R_D so that:

$$R_{D} = \frac{V_{DD} - V_{D}}{I_{D}} = \frac{V_{DD} - (V_{G} - V_{T})}{I_{D}}$$

Example – 2

Let's determine the proper resistor values to DC bias this MOSFET. The current source is 5.0 mA and has a minimum voltage of 2.0 Volts in order to operate properly

• Since $I=I_D=5\,mA$, we know that the value of V_{GS} should be:

$$V_{GS} = \sqrt{\frac{I}{K}} + V_{T}$$

$$= \sqrt{\frac{5.0}{0.2}} + 1.0$$

$$= 6.0 \text{ V}$$

• Assuming that we want the DC source voltage to be the minimum value of $V_S = 2.0V$, we need for the DC gate voltage to be:

$$V_G = V_{GS} + V_S$$

= 6.0 + 2.0
= 8.0 V

Example – 2 (contd.)

- Thus, we need to select resistors R_1 and R_2 so that: $V_G = 8.0 = V_{DD} \left(\frac{R_2}{R_1 + R_2} \right)$
- or in other words, we want: $\left(\frac{R_2}{R_1 + R_2}\right) = \frac{8.0}{15.0}$
- Since we can make R_1 and R_2 large, let's assume that we want: $R_1 + R_2 = 300 \, \text{K}$

So that
$$R_1=140~k\Omega$$
 and $R_2=160~k\Omega$.

- Finally, we want the DC drain voltage to be:
- So that the resistor is:

$$R_{D} = \frac{V_{DD} - V_{D}}{I_{D}}$$
$$= \frac{15.0 - 11.0}{5.0}$$
$$= 0.8 \text{ K}\Omega$$

$$V_{D} = \frac{V_{DD} + (V_{G} - V_{T})}{2}$$

$$= \frac{15.0 + (8.0 - 1.0)}{2}$$

$$= 11.0 \text{ V}$$

Example - 2 (contd.)

