

<u>Lecture – 7</u>

Date: 27.08.2015

- Common Source Amplifier with Constant Current Source, Triode Load, Source Degenerated Resistor
- Examples

CS Amplifier with Constant Current Source

- Now consider this NMOS amplifier using a current source.
 - Note **no** resistors or capacitors are present!
 - This is a **common source** amplifier.
 - *I_D* stability **is not a problem!**

CS Amplifier with Constant Current Source (contd.)

Q: I don't understand! Wouldn't the small-signal circuit be:

A: Remember, every real current source (as with every voltage source) has a source resistance r_o . A more accurate current source model is therefore:

Ideally, $r_o = \infty$. However, for good current sources, this output resistance is large (e.g., $r_o = 100 \ k\Omega$). Thus, we mostly **ignore** this value (i.e., approximate it as $r_o = \infty$), but there are some circuits where this resistance makes quite a **difference**. \rightarrow **This** is one of those circuits!

CS Amplifier with Constant Current Source (contd.)

- Therefore, a more **accurate** amplifier circuit schematic is:
- And so the **small-signal circuit** becomes the familiar:

CS Amplifier with Constant Current Source (contd.)

• Therefore, the small signal model is:

Now go ahead and do the analysis

Constant Current Source

NFET ideal current source

As long as a MOS transistor is in saturation region and $\lambda=0$, the • current is independent of the drain voltage and it behaves as an ideal current source seen from the drain terminal.

Constant Current Source (contd.)

Example of poor current source

 Since the variation of the source voltage directly affects the current of a MOS transistor, it does not operate as a good current source if seen from the source terminal

CS Amplifier with Constant Current Source (contd.)

CS Amplifier with Constant Current Source (contd.) $A_v = -g_{m1}(r_{o1} \Box r_{o2})$

- Both the load and the device operates in saturation
- The gain is loosely dependent on $|V_{DS}|$ of $M_2 \rightarrow as$ it regulates the r_{o2}
- The voltage $|V_{DS2,min}| = |V_{GS2} V_{T2}|$ can be reduced \rightarrow by increasing $(W/L)_2$ \rightarrow increases $V_{D1} \rightarrow$ in essence the output voltage swing
- r_{o2} can be increased \rightarrow by reducing the channel length modulation effect \rightarrow through increasing the length and width of $M_2 \rightarrow$ while keeping $|V_{GS2} - V_{T2}|$ constant \rightarrow However, this also brings large capacitance at the output of M_2 .
- At a given drain current, W has to increase with the increasing L ($r_o \alpha L/I_D$) for obtaining higher gain
- If length of M₁ is increased by a factor → then the width has to be increased proportionally → for a given I_{D1}, V_{GS1}-V_{T1} is directly proportional to (W/L)₁ → if W₁ is not scaled properly then it will reduce V_{GS1}-V_{T1} → will effectively lead to reduced voltage swing

CS Amplifier with Constant Current-Source Load (contd.)

Furthermore, just scaling of L₁ leads to reduced g_{m1} → in essence possibility of reduced gain

However,
$$g_{m1}r_{o1} = \sqrt{2\left(\frac{W}{L}\right)_1 \mu_n C_{ox} I_D} \frac{1}{\lambda I_D}$$

- The gain will increase with increasing L₁ considering that λ depends more strongly on L than g_m does
- for M₂, increase in L₂ while keeping W₂ constant → increases r_{o2} → increases gain of the CS amplifier → but decreases |V_{DS2}| → reduces the output voltage swing

CS Amplifier with Triode Load

- The main limitation of this technique is the dependence of gain on the process parameters → because R_{on} is dependent on these parameters
- Process parameters are temperature dependent

 makes gain

 dependent on temperature
- Triode loads consume less voltage headroom as compared to diodeconnected load → Here, V_{out,max}=V_{DD}

CS Amplifier with Source Degeneration

CS Amplifier with Source Degeneration (contd.)

- Therefore the voltage gain: $A_v = \frac{v_{out}}{v_{in}} = -\frac{g_m R_D}{(1 + g_m R_c)}$
- The input resistance: $R_{in} = \infty$
- The output resistance: $R_{out} = R_D$

• For large R_s: $A_v = -\frac{R_D}{R_s}$ Linear $V_{DD} - V_{in} + V_T > I_D R_D$ \leftarrow $V_{DD} - I_D R_D > V_{in} - V_T$

• A_v drops when: $V_{DD} - V_{in} + V_T < I_D R_D$ \leftarrow M₁ goes in triode

Even with all the supposed benefits of this configuration, the major drawback is the reduced small-signal gain

Valid as long as M₁ is in saturation

CS Amplifier with Source Degeneration (contd.)

CS Amplifier with Source Degeneration (contd.)

Output Resistance

CS Amplifier with Source Degeneration (contd.)

Small-signal gain

Example – 1

 Assuming M₁ in saturation, calculate the small signal voltage gain of the following:

Example – 2

• Assuming both M_1 and M_2 in saturation, calculate the small signal voltage gain of the following:

Example – 3

• Assuming both M_1 and M_2 in saturation, calculate the small signal voltage gain of the following:

Example – 3 (contd.)

• Simplification of the expressions gives:

$$g_{m1}R_{D}v_{in} - \frac{\left(1 + \frac{R_{D}}{r_{o1}}\right)\left(g_{m1}v_{in} + \frac{v_{out}}{r_{o2}}\right)}{g_{m2} + \frac{1}{r_{o1}}} = v_{out}$$

$$A_{v} = \frac{v_{out}}{v_{in}} = \frac{g_{m1}(g_{m2}R_{D}-1)}{g_{m2} + \frac{1}{r_{o1}} + \frac{1}{r_{o2}}\left(1 + \frac{R_{D}}{r_{o1}}\right)}$$