## ECE315 / ECE515

## Lecture - 4

Date: 13.08.2015

- The MOSFET as a Switch and Amplifier
- MOSFET Small Signal Operation, Models, Analysis


## ECE315 / ECE515

## Example-3

- Consider the PMOS circuit below, find the value of unknown of resistor R.



## ECE315 / ECE515

## The MOSFET as a Switch and an Amplifier

- Consider this simple MOSFET circuit:


Q: Oh, goody-you're going to waste my time with another of these pointless academic problems. Why can't you discuss a circuit that actually does

A: Actually, this circuit is a fundamental electronic device! To see what this circuit does, we need to determine its transfer function $\boldsymbol{V}_{\boldsymbol{o}}=\boldsymbol{f}\left(\boldsymbol{V}_{\boldsymbol{i}}\right)$.

## ECE315 / ECE515

The MOSFET as a Switch and an Amplifier (contd.)
Q: Transfer function! How can we determine the transfer function of a MOSFET circuit!?

A: Same as with junction diodes-we determine the output $\boldsymbol{V}_{\boldsymbol{o}}$ for each device mode, and then determine
 when (i.e., for what values of $\boldsymbol{V}_{\boldsymbol{i}}$ ) the device is in that mode!

- First, note that regardless of the MOSFET mode:

$$
\begin{gathered}
V_{G S}=V_{i}-0.0=V_{i} \\
V_{D S}=V_{o}-0.0=V_{o}
\end{gathered}
$$

- From KVL, we can likewise conclude that:

$$
V_{D S}=V_{o}=5.0-I_{D} R_{D}
$$



## ECE315 / ECE515

The MOSFET as a Switch and an Amplifier (contd.)

- Now let's ASSUME that the MOSFET is in cutoff, thus ENFORCING $I_{D}=0$.

$$
V_{D S}=V_{o}=5.0-I_{D} R_{D} \longmapsto V_{o}=5.0-0 \times\left(1 \times 10^{3}\right)
$$

$$
\square \therefore V_{o}=5.0 \mathrm{~V}
$$

- Now, we know that MOSFET is in cutoff when: $V_{G S}=V_{i}<V_{T}=1.0 \mathrm{~V}$
- Thus, we conclude that:

$$
V_{o}=5.0 \mathrm{~V} \text { when } V_{i}<1.0 \mathrm{~V}
$$

## ECE315 / ECE515

The MOSFET as a Switch and an Amplifier (contd.)

- Now, let's ASSUME that the MOSFET is in saturation, thus ENFORCE:

$$
I_{D}=K\left(V_{G S}-V_{T}\right)^{2} \longmapsto I_{D}=K\left(V_{i}-1.0\right)^{2}
$$

- And thus the output voltage is:

$$
\begin{aligned}
& V_{o}=5.0-I_{D} R_{D}=5.0-0.75 \times 10^{-3} \times\left(V_{i}-1.0\right)^{2} \times 1 \times 10^{3} \\
& \therefore V_{o}=5.0-0.75 \times\left(V_{i}-1.0\right)^{2}
\end{aligned}
$$

- We know that MOSFET is in saturation when:

$$
V_{G S}=V_{i}>V_{T}=1.0 \mathrm{~V} \quad \text { and } \quad V_{D S}=V_{o}>V_{G S}-V_{T}=V_{i}-1.0
$$

- The second inequality means:

$$
V_{o}>V_{i}-1.0 \quad 5.0-0.75 \times\left(V_{i}-1.0\right)^{2}>V_{i}-1.0
$$

## ECE315 / ECE515

The MOSFET as a Switch and an Amplifier (contd.)

$$
0>0.75 \times\left(V_{i}-1.0\right)^{2}+\left(V_{i}-1.0\right)-5.0
$$

- Solving this quadratic, we find that the only consistent solution is:

$$
V_{i}-1.0<2.0 \quad V_{i}<3.0
$$

- Thus we conclude that the MOSFET in saturation:

$$
V_{o}=5.0-0.75 \times\left(V_{i}-1.0\right)^{2} \quad \underline{\text { when }} \quad 1.0<V_{i}<3.0 \mathrm{~V}
$$

- Finally, let's ASSUME that the MOSFET is in triode mode, thus we ENFORCE:

$$
I_{D}=K\left[2\left(V_{G S}-V_{T}\right) V_{D S}-\left(V_{D S}\right)^{2}\right]
$$

- And thus the output voltage is:

$$
V_{o}=5.0-I_{D} R_{D}=5.0-0.75 \times\left[2\left(V_{i}-1.0\right) V_{o}-\left(V_{o}\right)^{2}\right]
$$

## ECE315 / ECE515

## The MOSFET as a Switch and an Amplifier (contd.)

- Rearranging the equation, we get the quadratic form:
$0.75\left(V_{o}\right)^{2}-\left(1.5 V_{i}-0.5\right) V_{o}+5.0=0$
- The solutions of which are:

$$
V_{o}=\frac{\left(1.5 V_{i}-0.5\right) \pm \sqrt{\left(1.5 V_{i}-0.5\right)^{2}-15.0}}{1.5}
$$

- Note because of the $\pm$, there are two possible solutions. However, to be in triode region, the MOSFET must not be in pinchoff, ie.:

$$
V_{D S}=V_{o}<V_{G S}-V_{T}=V_{i}-1.0
$$

- This condition is satisfied with the smaller of the two solutions (ie., the solution with the minus sign!):

$$
V_{o}=\frac{\left(1.5 V_{i}-0.5\right)-\sqrt{\left(1.5 V_{i}-0.5\right)^{2}-15.0}}{1.5}
$$

## ECE315 / ECE515

The MOSFET as a Switch and an Amplifier (contd.)

$$
V_{o}=\frac{\left(1.5 V_{i}-0.5\right)-\sqrt{\left(1.5 V_{i}-0.5\right)^{2}-15.0}}{1.5}
$$

This expression provides us with the output voltage if the MOSFET is in triode mode. The question remaining is thus when (i.e., for what values of $V_{i}$ ) is the MOSFET in triode mode?

We could do a lot more math to find this answer, but this answer is actually quite obvious!

- Recall that we have already determined that:
a) The MOSFET is in cutoff when $\boldsymbol{V}_{\boldsymbol{i}}<\mathbf{1 . 0 V}$.
b) The MOSFET is in saturation when $1.0 \mathrm{~V}<\boldsymbol{V}_{\boldsymbol{i}}<\mathbf{3 . 0 V}$.


## ECE315 / ECE515

## The MOSFET as a Switch and an Amplifier (contd.)

- Since there are only three modes of a MOSFET device, and since the transfer function must-well-be a function, we can conclude (correctly) that the MOSFET will be in triode region when $\boldsymbol{V}_{\boldsymbol{i}}$ is the value of the only region that is left: $V_{i}>3.0 \mathrm{~V}$.
- Thus we can conclude that:

$$
\left.V_{o}=\frac{\left(1.5 V_{i}-0.5\right)-\sqrt{\left(1.5 V_{i}-0.5\right)^{2}-15.0}}{1.5}\right) \text { when } \quad V_{i}>3.0 \mathrm{~V}
$$

## ECE315 / ECE515

The MOSFET as a Switch and an Amplifier (contd.)

- We now have determined the complete, continuous transfer function of this circuit!



## ECE315 / ECE515

The MOSFET as a Switch and an Amplifier (contd.)


## ECE315 / ECE515

The MOSFET as a Switch and an Amplifier (contd.)


## ECE315 / ECE515

The MOSFET as a Switch and an Amplifier (contd.)

- From the transfer function, we find that if $V_{i}=0 \mathrm{~V}$, the output voltage will be $V_{o}=5 \mathrm{~V}$. Likewise, if the input voltage is $V_{i}=5 \mathrm{~V}$, the output voltage will be small.



## ECE315 / ECE515

## The MOSFET as a Switch and an Amplifier (contd.)

- This circuit provides a simple example of one of the primary applications of MOSFET devices-digital circuit design. We can use MOSFETs to make digital devices such as logic gates (AND, OR, NOR, etc.), flip-flops, and digital memory.
- We typically find that, just like this circuit, when a MOSFET digital circuit is in either of its two binary states (i.e., " 0 " or " 1 "), the MOSFETs in the circuit will either be in cutoff ( $I_{D}=0$ ) or in triode ( $V_{D S}$ small) modes.
$\rightarrow$ Cutoff and Triode are the MOSFET modes associated with digital circuits and applications!


## ECE315 / ECE515

## The MOSFET as a Switch and an Amplifier (contd.)



A: Actually, we will find the MOSFET saturation mode to be extremely useful!

## ECE315 / ECE515

## The MOSFET as a Switch and an Amplifier (contd.)

- To see why, let us take the derivative of the above circuit's transfer function (i.e., ${ }^{d V_{o}} / d V_{i}$ ).



## ECE315 / ECE515

## The MOSFET as a Switch and an Amplifier (contd.)

Q: Oh goody. The slope of the transfer function is large when the MOSFET is in saturation. Am I supposed to be impressed by that?! How are these results even remotely important!?


A: Since in cutoff and triode $\left.\right|^{d V_{o}} / d V_{i} \mid \approx 0$, a small change in input voltage $V_{i}$ will result in almost no change in output voltage $\boldsymbol{V}_{\boldsymbol{o}}$.

Contrast this with the saturation region, where $\left\lvert\, \begin{aligned} & d V_{o} / d V_{i}\end{aligned} \gg 1\right.$. This means that a small change in input voltage $V_{i}$ results in a large change in the output voltage $V_{o}$ !

## ECE315 / ECE515

## The MOSFET as a Switch and an Amplifier (contd.)

- To see how this is important, consider the case where the input signal has both a DC and a small-signal (AC) component:

$$
\boldsymbol{v}_{\boldsymbol{I}}(\mathrm{t})=V_{i}+v_{i}(t)
$$

- As a result, the output voltage likewise has both a DC and small signal component:

$$
\boldsymbol{v}_{\boldsymbol{o}}(\mathrm{t})=V_{o}+v_{o}(t)
$$

Now, let's consider only the DC components. We can select the DC input $V_{i}$ such that the MOSFET is placed in saturation. The value $V_{i}$, along with the resulting DC output $V_{o}$, sets a DC bias point for this circuit.

By selecting the right value of $V_{i}$ we could set this DC bias point to where the transfer function slope is the greatest.

## ECE315 / ECE515

## The MOSFET as a Switch and an Amplifier (contd.)



Now, say we add a small-signal $v_{i}$ to this input DC voltage (i.e., $\left.\boldsymbol{v}_{I}(\mathrm{t})=V_{i}+v_{i}(t)\right)$.
This small signal simply represents a small change in the input voltage from its average (i.e., DC) value. The result is of course as small change in the output voltage - the small-signal output voltage $v_{o}(t)$ !

## ECE315 / ECE515

## The MOSFET as a Switch and an Amplifier (contd.)

- Now for the interesting part (I bet you were wondering when I would get around to it)! The small change in the output voltage will have a much larger magnitude than the small change in the input!

For example, if the input voltage changes by 1 mV (i.e., $v_{i}=1 \mathrm{mV}$ ), the output might change by, say, $\mathbf{5} \mathbf{~ m V}$ (i.e., $v_{o}=5 \mathrm{mV}$ ).

Q: Goodness! By how much would the output change in our example circuit? How can we determine the

## ECE315 / ECE515

## The MOSFET as a Switch and an Amplifier (contd.)

- Determining how much the output voltage of our circuit will change when we change the input voltage by a small amount is very straightforwardwe simply take the derivative of the output voltage $v_{0}$ with respect to input voltage $v_{I}$.
- By taking the derivative of $v_{O}$ with respect to $v_{I}$ (when the MOSFET is in saturation, we find:

$$
\frac{d v_{O}}{d v_{I}}=\frac{d\left(5.0-0.75\left(v_{I}-1.0\right)^{2}\right)}{d v_{I}} \rightleftarrows \quad=-1.50\left(v_{I}-1.0\right) . \begin{aligned}
& \underline{\text { when }} 1.0<v_{I}<3.0 \mathrm{~V}
\end{aligned}
$$

The expression describes the slope of our circuit's transfer function (for $1.0<v_{I}<3.0 \mathrm{~V}$ ). Note the slope with the largest magnitude occurs when $v_{I}=3.0 \mathrm{~V}$, providing a slope of $-3.0 \mathrm{mV} / \mathrm{mV}$.

## ECE315 / ECE515

## The MOSFET as a Switch and an Amplifier (contd.)

- Thus, if we DC bias this circuit with $V_{i}=3.0 \mathrm{~V}$ (resulting in $V_{o}=2.0 \mathrm{~V}$ ), we find that the small signal output will be 3 times the small signal input!
- For example, say that the input to our circuit is:

$$
v_{I}(\mathrm{t})=3.0+0.01 \cos (\omega t) V \quad \underline{\text { Here: }} \quad V_{i}=3.0 V \quad v_{i}=0.01 \cos (\omega t)
$$

- We would find that the output voltage would approximately be:

$$
v_{0}(\mathrm{t})=2.0-0.03 \cos (\omega t) V \quad \underline{\text { Here: }} \quad V_{o}=2.0 \mathrm{~V} \quad v_{0}=-0.03 \cos (\omega t)
$$

In other words, the magnitude of the small-signal output has a magnitude three times larger than the input magnitude.

We say then that our signal provides small-signal gain-our circuit is also a small-signal amplifier!

## ECE315 / ECE515

## The MOSFET as a Switch and an Amplifier (contd.)

I see. A small voltage change results in a big voltage change-it's voltage gain!

The MOSFET saturation mode turns out to be-excellent.

- Even the simple circuit of this example is sufficient to demonstrate the two primary applications of MOSFET transistors--digital circuits and signal amplification.
- Whereas the important MOSFET regions for digital devices are triode and cutoff, MOSFETs in amplifier circuits are typically biased into the saturation mode!


## ECE315 / ECE515

## MOSFET - Small Signal Operation

- Consider this circuit, which has both a DC and an AC small signal source. As a result, each voltage and current in the circuit has both a DC and small-signal component.

- If the MOSFET is in saturation, then the total drain current is:

$$
\Rightarrow i_{D}=\underbrace{i_{D}=K\left[V_{G S}+v_{g s}-V_{T}\right]^{2}}_{\text {Very Small If: } \left.v_{g s}<2\left[V_{G S}-V_{T}\right]^{2}-V_{T}\right]}
$$

We call this equation the small-signal condition.

## ECE315 / ECE515

## MOSFET - Small Signal Operation (contd.)

Now,

$$
i_{d}=2 K\left[V_{G S}-V_{T}\right] v_{g s}
$$

$$
\Rightarrow \frac{i_{d}}{v_{g s}}=2 K\left[V_{G S}-V_{T}\right] \longleftarrow \mathrm{g}_{\mathrm{m}}
$$

$$
\text { Alternatively, } \quad \Rightarrow g_{m}=2 K V_{O V}
$$

- The small-signal parameter $\mathrm{g}_{\mathrm{m}}$ can likewise be derived from a smallsignal analysis of the drain current: $i_{d}=\left.\frac{d i_{D}}{d V_{G S}}\right|_{v_{G S}=V_{G S}}\left(v_{g s}\right)=\left.2 K\left[v_{G S}-V_{T}\right]\right|_{V_{G S}=V_{G S}}\left(v_{g s}\right)$ $i_{d}=2 K\left[V_{G S}-V_{T}\right]\left(v_{g s}\right) \quad i_{d}=g_{m}\left(v_{g s}\right)$

Physical meaning of the $g_{m}$
$\rightarrow$ formal definition


## ECE315 / ECE515

## MOSFET - Small Signal Operation (contd.)

The MOSFET transconductance relates a small change in $v_{G S}$ to a small change in drain current $i_{D}$. This change is completely dependent on the DC bias point of the MOSFET, $V_{G S}$ and $I_{D}$.

## ECE315 / ECE515

## MOSFET - Small Signal Operation (contd.)



- The total instantaneous drain voltage $\boldsymbol{v}_{\boldsymbol{D}}$ is given by:

$$
v_{D S}=v_{D}=V_{D D}-i_{D} R_{D}
$$

- Under small signal condition it changes to:

$$
\begin{gathered}
v_{D}=V_{D D}-R_{D}\left(I_{D}+i_{d}\right) \\
\Rightarrow V_{D}+v_{d}=V_{D D}-I_{D} R_{D}-i_{d} R_{D}
\end{gathered}
$$

Signal component of drain voltage ( $v_{d}$ )
$v_{d}=-i_{d} R_{D}=-g_{m} v_{g s} R_{D}$

$$
\Rightarrow A_{v}=\frac{v_{d}}{v_{g s}}=-g_{m} R_{D}
$$

Thus, if $g_{m} R_{D} \gg 1$, we have smallsignal voltage gain.

## ECE315 / ECE515

## MOSFET - Small Signal Operation (contd.)



It indicates that $v_{d}$ is $180^{\circ}$ out of phase with respect to $v_{\mathrm{gs}}$

The input has been assumed very small as compared to overdrive voltage $\left[\mathrm{v}_{\mathrm{gs}} \ll 2\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)\right.$ ]

For saturation: $v_{D \text { min }} \geq v_{G \text { max }}-V_{T}$

$$
v_{D \max } \leq V_{D D}
$$

