

Lecture-2

Date: 06.08.2015

- NMOS I/V Characteristics
- Discussion on I/V Characteristics
- MOSFET Second Order Effect

NMOS I-V Characteristics

Gradual Channel Approximation: Cut-off → Linear/Triode → Pinch-off/Saturation

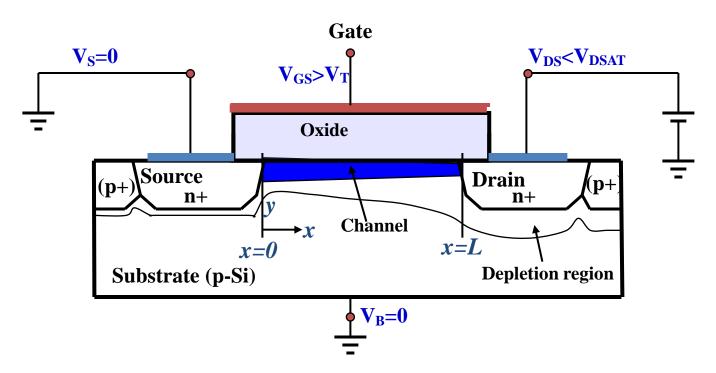
Assumptions:

- $V_{SR} = 0$
- V_T is constant along the channel
- E_x dominates E_y => need to consider current flow only in the x -direction
- Cutoff Mode: $0 \le V_{GS} \le V_T$ $I_{DS(cutoff)} = 0$

This relationship is very simple—if the MOSFET is in **cutoff**, the drain current is simply **zero**!

Linear Mode: $V_{GS} \ge V_{T}$, $0 \le V_{DS} \le V_{D(SAT)} \Rightarrow V_{DS} \le V_{GS} - V_{T}$

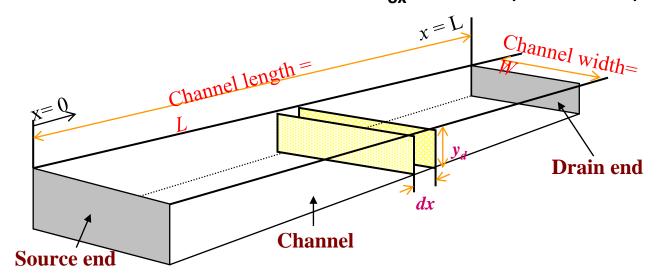
The channel reaches the drain.



- $V_c(x)$: Channel voltage with respect to the source at position x.
- Boundary Conditions: $V_c(x=0) = V_S = 0$; $V_c(x=L) = V_{DS}$

Linear Mode (Contd.)

 Q_d : the charge density along the direction of current = $WC_{ox}[V_{GS}-V_T]$ where, **W** = width of the channel and **WC**_{ox} is the capacitance per unit length



- Now, since the channel potential varies from $\mathbf{0}$ at source to \mathbf{V}_{DS} at the drain $Q_d(x) = WC_{ox}[(V_{GS} V_c(x)) V_T]$, where, $V_c(x)$ = channel potential at x.
- Subsequently we can write: $I_D(x) = Q_d(x)$. v, where, v = velocity of charge (m/s)

Linear Mode (Contd.)

 $v = \mu_n E$; where, μ_n = mobility of charge carriers (electron)

E = electric field in the channel given by:
$$E(x) = -\frac{dV}{dx}$$

Therefore,
$$I_D(x) = WC_{ox} \left[V_{GS} - V_c(x) - V_T \right] \mu_n \frac{dV}{dx}$$

• Applying the boundary conditions for $V_c(x)$ we can write:

$$I_D(x) = I_D = \int_{x=0}^{x=L} I_D.dx = \int_{V=0}^{V=V_{DS}} WC_{ox} [V_{GS} - V(x) - V_T] \mu_n.dV$$

• Simplification gives the drain current in linear mode as:

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} \left[2(V_{GS} - V_{T}) V_{DS} - V_{DS}^{2} \right]$$

Then,
$$I_{D,\max} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_T)^2$$

The $I_{D,max}$ occurs at, $V_{DS} = V_{GS} - V_{T}$, [how/why?] called overdrive voltage

Linear Mode (Contd.)

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} \left[2(V_{GS} - V_{T}) V_{DS} - V_{DS}^{2} \right]$$

Observations:

- I_D is dependent on constant of technology ($\mu_n C_{ox}$), the device dimensions (W and L), and the gate and drain potentials with respect to the source
- For $V_{DS} \ll 2(V_{GS}-V_T)$, I_D can be approximated as:

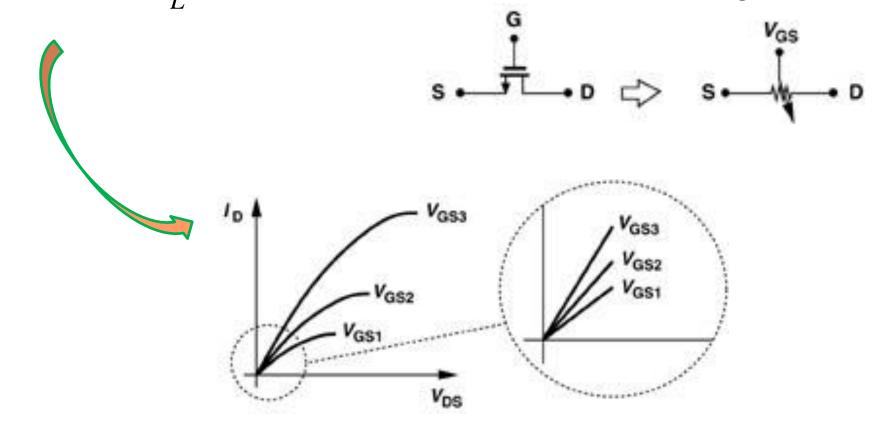
$$I_D \approx \mu_n C_{ox} \frac{W}{I} (V_{GS} - V_T) V_{DS}$$
 Linear function of V_{DS}

Thus, for small values of V_{DS} the drain current can be thought of as a straight line \rightarrow implying that the path from source to drain can be represented by a linear resistor \rightarrow support of earlier assumption

Linear Mode (Contd.)

$$R_{DS} = \frac{V_{DS}}{I_{D}} = \frac{1}{\mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{T})}$$

MOSFET transistor operate as a resistor whose value is controlled by overdrive voltage



Pinch-off point (Edge of Saturation): $V_{GS} \ge V_{T}$, $V_{DS} = V_{D(SAT)}$

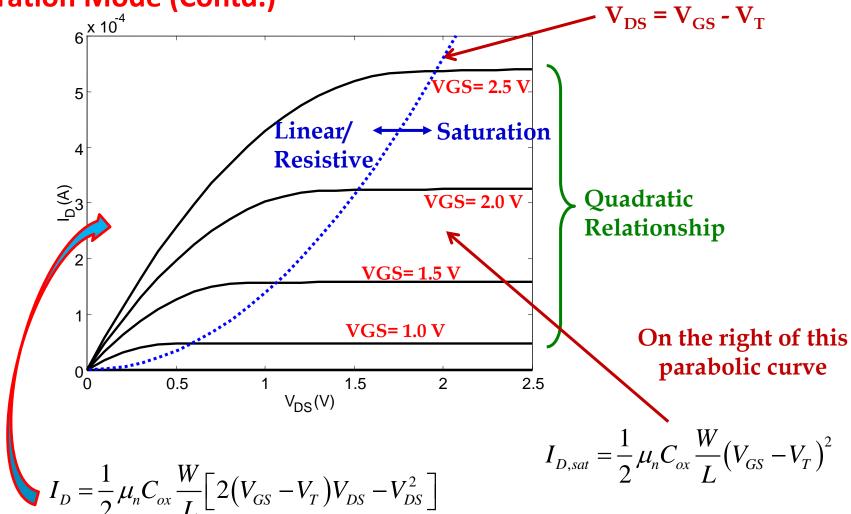
- The channel just reaches the drain but with zero inversion at the drain
- Electrons start to drift from the channel to the drain
- The drain current is given by: $I_D = I_{D,\text{max}} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} V_T)^2$

Saturation Mode: $V_{GS} \ge V_{T}$, $V_{DS} \ge V_{GS} - V_{T}$

After pinch-off, the I_D saturates i.e, is relatively independent of V_{DS}

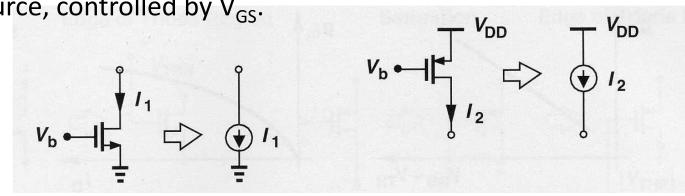
$$I_{D,sat} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_T)^2$$

Saturation Mode (Contd.)



Saturation Mode (Contd.)

MOSFET can be used as current source connected between the drain and the source, controlled by V_{GS}.



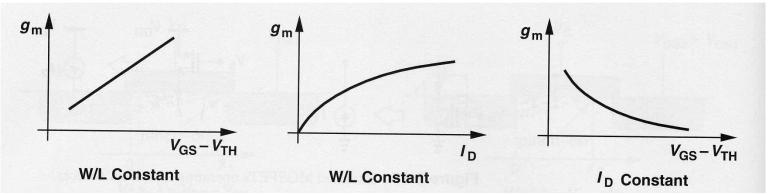
- MOSFET in saturation mode \rightarrow produces a current regulated by $V_{GS} \rightarrow$ imperative to define a figure of merit (FOM) that identifies the effectiveness with which the MOSFET can convert voltages in currents \rightarrow the FOM in this scenario is called "transcodunctance (g_m)".
- Defined as the change in the drain current divided by the change in the gate-source voltage.

$$\left|g_{m} = \frac{\partial I_{D}}{\partial V_{GS}}\right|_{V_{DS},const.} = \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{T})$$

Transconductance (g_m)

- In essence, g_m represents the sensitivity of the device. For a high g_m , a small change in V_{GS} results in a large change in I_D .
- Other formulations of g_m:

 Behavior of g_m as a function of one parameter while other parameters remain fixed.



Home Assignment # 0

Can we define g_m in the triode/linear region? **Due by 12.08.2015**

Channel Resistance for Small V_{DS}

- Recall voltage V_{DS} will be **directly proportional** to I_D , provided that:
 - 1. A conducting channel has been **induced**.
 - 2. The value of V_{DS} is small.

Note for this situation, the MOSFET will be in **triode** region.

- \rightarrow Recall also that as we **increase** the value of V_{DS} , the conducting channel will begin to **pinch off**—the current will **no longer** be directly proportional to V_{DS} .
- Specifically, there are **two phenomena** at work as we **increase** V_{DS} while in the **triode** region:
 - 1. Increasing V_{DS} will increase the potential difference across the conducting channel \rightarrow leads to proportional increase in I_D .
 - 2. Increasing V_{DS} will decrease the conductivity of the induced channel \rightarrow leads to decrease in I_D .

Channel Resistance (contd.)

• There are **two** physical phenomena at work as we increase V_{DS} , and there are **two** terms in the triode drain current equation!

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} \Big[2(V_{GS} - V_{T}) V_{DS} - V_{DS}^{2} \Big]$$

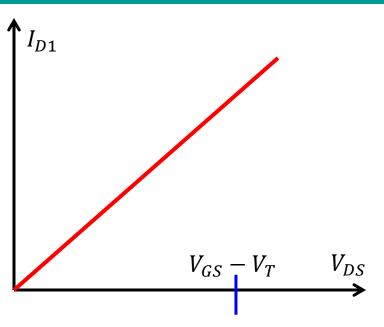
$$I_{D} = \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{T}) V_{DS} - \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} V_{DS}^{2}$$

$$I_{D} = I_{D1} + I_{D2}$$

Where:
$$I_{D1} = \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_T) V_{DS}$$
 $I_{D2} = -\frac{1}{2} \mu_n C_{ox} \frac{W}{L} V_{DS}^2$

$$I_{D1} = \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_T) V_{DS}$$

We note that this term is **directly proportional** to V_{DS} — if V_{DS} increases 10%, the value of this term will increase 10%. Note that this is true **regardless** of the magnitude of V_{DS} !

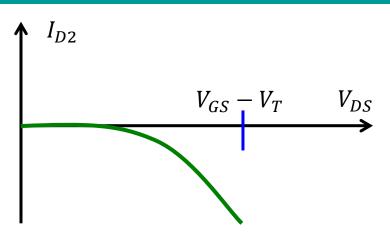


- → It is evident that this term describes the **first** phenomenon:
 - 1. Increasing V_{DS} will increase the potential difference across the conducting channel \rightarrow leads to proportional increase in I_D .

In other words, this first term would accurately describe the relationship between I_D and V_{DS} if the MOSFET induced channel behaved like a **resistor**! \longleftrightarrow it means the second term doesn't allow it to behave like a perfect resistor.

$$I_{D2} = -\frac{1}{2} \mu_n C_{ox} \frac{W}{L} V_{DS}^2$$

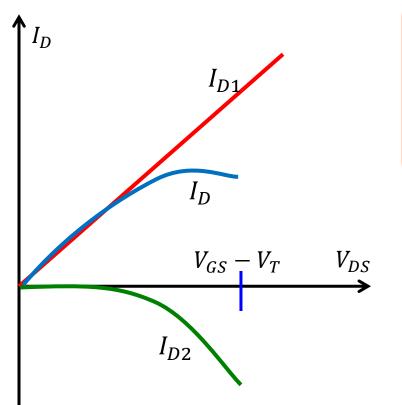
It is apparent that I_{D2} is **not** directly proportional to V_{DS} , but instead proportional to V_{DS} **squared**!!



Moreover, the minus sign means that as V_{DS} increases, I_{D2} will actually **decrease!** This behavior is **nothing** like a resistor—what the heck is going on here??

- → This **second term** essentially describes the result of the **second** phenomena:
 - 2. Increasing V_{DS} will decrease the conductivity of the induced channel \rightarrow leads to decrease in I_D .

• Now let's add the two terms I_{D1} and I_{D2} together to get the total triode drain current I_D :



It is apparent that the second term I_{D2} works to **reduce** the total drain current from its "**resistor-like**" value I_{D1} . This of course is physically due to the **reduction in channel conductivity** as V_{DS} increases.

Q: But look! It appears to me that for small values of V_{DS} , the term I_{D2} is very small, and thus $I_D \approx I_{D1}$ (when V_{DS} is small)!

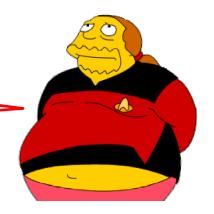
A: Absolutely **true**! Recall this is **consistent** with our earlier discussion about the induced channel—the channel conductivity begins to significantly **degrade** only when V_{DS} becomes **sufficiently large**!

Channel Resistance (contd.)

- Thus, we can conclude: $I_D \approx I_{D1} = \mu_n C_{ox} \frac{W}{I} (V_{GS} V_T) V_{DS}$ For small V_{DS}
- Moreover, we can (for small V_{DS}) approximate the induced channel as a resistor R_{DS} of value $R_{DS} = \frac{V_{DS}}{I_{D}}$:

$$R_{DS} = \frac{1}{\mu_n C_{ox} \frac{W}{L} (V_{GS} - V_T)}$$
 For small V_{DS}

Q: I've just about had it with this "for small V_{DS} " nonsense! Just **how** small **is** small? How can we know **numerically** when this approximation is valid?



A: Well, we can say that this approximation is valid when I_{D2} is much smaller than I_{D1} (i.e., I_{D2} is insignificant).

Channel Resistance (contd.)

• Mathematically, we can state as: $|I_{D2}| \ll |I_{D1}|$

$$\frac{1}{2}\mu_{n}C_{ox}\frac{W}{L}V_{DS}^{2} \ll \mu_{n}C_{ox}\frac{W}{L}(V_{GS}-V_{T})V_{DS} \qquad V_{DS} \ll 2(V_{GS}-V_{T})$$

Thus, we can **approximate** the induced channel as a **resistor** R_{DS} when V_{DS} is **much less** than the **twice the excess gate voltage**.

$$R_{DS} = \frac{1}{\mu_n C_{ox} \frac{W}{L} (V_{GS} - V_T)}$$
For $V_{DS} \ll 2(V_{GS} - V_T)$

Q: There you go again! The statement $V_{DS} \ll 2(V_{GS} - V_T)$ is only slightly more helpful than the statement "when V_{DS} is small". Precisely how much smaller than twice the excess gate voltage must V_{DS} be in order for our approximation to be accurate?

Channel Resistance (contd.)

A: We cannot say **precisely** how much smaller V_{DS} needs to be in relation to $2(V_{GS} - V_T)$ unless we state **precisely** how **accurate** we require our approximation to be!

• For example, if we want the **error** associated with the approximation $I_D \approx I_{D1}$ to be **less than 10%**, we find that we require the voltage V_{DS} to be **less than 1/10** the value $2(V_{GS} - V_T)$.

In other words, if:
$$V_{DS} < \frac{2(V_{GS} - V_T)}{10} = \frac{V_{GS} - V_T}{5}$$

• we find then that I_{D2} is less than 10% of I_{D1} : $I_{D2} < \frac{I_{D1}}{10}$

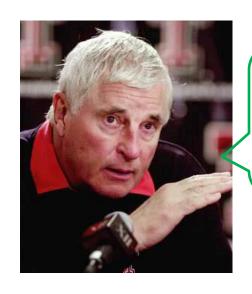
This 10% error criteria is a typical "rule-of thumb" for many approximations in electronics. However, this does not mean that it is the "correct" criteria for determining the validity of this (or other) approximation.

Channel Resistance (contd.)

 For some applications, we might require better accuracy. For example, if we require less than 5% error, we would find that:

$$V_{DS} < \frac{V_{GS} - V_T}{10}$$

It is important to note that we should use these approximations when we can—it can make our **circuit analysis much easier**!



See, the thing is, you should use these approximations whenever they are **valid**. They often make your **circuit analysis** task **much** simpler

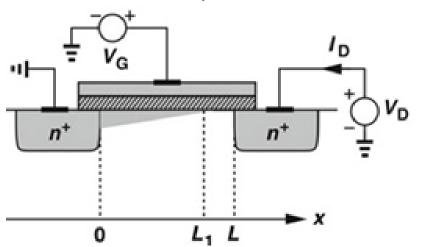
Second Order Effect - Channel Length Modulation

• I have been saying that for a MOSFET in **saturation**, the drain current is **independent** of the drain-to-source voltage V_{DS} i.e.

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{T})^{2}$$

In reality, this is only approximately true!

Let us look at operation of NMOS in saturation mode:



Observations:

- The pinch-off point moves towards the source with the increase in $V_{\rm DS}$
- Channel length reduces
- Channel resistance decreases

This modulation of channel length (L) by V_{DS} is known as **channel-length modulation**, and leads to slight dependence of I_D on V_{DS} .

Second Order Effect - Channel Length Modulation (contd.)

• The drain current in saturation mode is: $I_{D,sat} = \frac{1}{2} \mu_n C_{ox} \frac{W}{C} (V_{GS} - V_T)^2$

The decrease in channel length with increase in V_{DS} essentially increases the drain current I_{D}

L actually varies with V_{DS}

If
$$\Delta L = L - L_1$$
 then: $\frac{1}{L_1} = \frac{1}{L - \Delta L} = \frac{1}{L} \cdot \frac{1}{1 - \frac{\Delta L}{L}} = \frac{1}{L} \cdot \frac{1}{1 - \lambda V_{DS}} \approx \frac{1}{L} \cdot (1 + \lambda V_{DS})$

 λ : channel length modulation coefficient (usually less than 0.1)

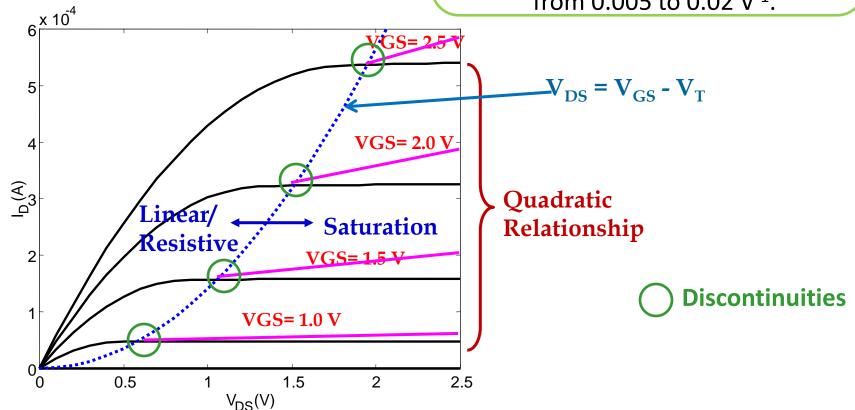
Therefore the drain current in saturation mode becomes:

$$I_{D,sat} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_T)^2 (1 + \lambda V_{DS})$$

Second Order Effect - Channel Length Modulation (contd.)

$$I_{D,sat} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_T)^2 (1 + \lambda V_{DS})$$

Where the value λ is a MOSFET **device parameter** with units of 1/V (i.e., V⁻¹). Typically, this value is small (thus the dependence on V_{DS} is slight), ranging from 0.005 to 0.02 V⁻¹.

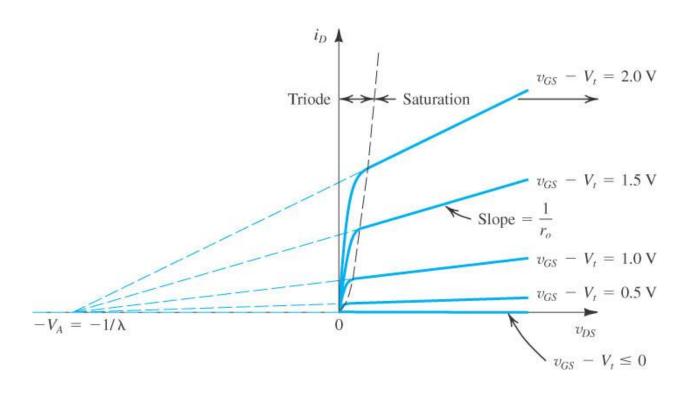


Second Order Effect - Channel Length Modulation (contd.)

• Often, the channel-length modulation parameter λ is expressed as the **Early Voltage** V_A , which is simply the inverse value of λ .

$$V_A = \frac{1}{\lambda}$$

• The parameter V_A is set at the time of fabrication and hence the circuit designers can't alter it at circuit/system design stage.



Second Order Effect - Channel Length Modulation (contd.)

 The drain current for a MOSFET in saturation can likewise be expressed as:

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{T})^{2} (1 + \lambda V_{DS})$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{T})^{2} \left(1 + \frac{V_{DS}}{V_{A}}\right)$$

• Now, let's **define** a value I_{DI}, which is simply the drain current in saturation **if** no channel-length modulation actually occurred—in other words, the **ideal** value of the drain current:

$$I_{DI} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_T)^2$$

• Thus, we can **alternatively** write the drain current in saturation as:

$$I_D = I_{DI} \left(1 + \frac{V_{DS}}{V_A} \right)$$

This **explicitly** shows how the drain current behaves as a function of voltage V_{DS} .

Second Order Effect - Channel Length Modulation (contd.)

$$I_D = I_{DI} \left(1 + \frac{V_{DS}}{V_A} \right)$$

We can interpret the value V_{DS}/V_A as the **percent increase** in drain current I_D over its ideal (i.e., no channel length modulation) saturation value

• Now, let's introduce a **third** way (i.e. in addition to, λ and V_A) to describe the "extra" current created by channel-length modulation. Define the **Drain Output**

$$r_o = \frac{1}{\lambda I_{DI}} = \frac{V_A}{I_{DI}}$$

Resistance r_o :

 Using this definition, we can write the saturation drain current expression as:

$$I_{D} = I_{DI} \left(1 + \frac{V_{DS}}{V_{A}} \right) \qquad I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{T}) + \frac{V_{DS}}{r_{o}}$$

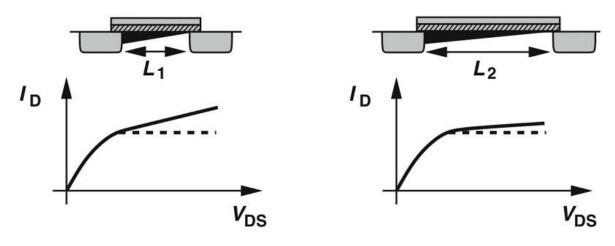
Thus, we **interpret** the "extra" drain current (due to channel length modulation) as the current flowing through a **drain output resistor** r_o .

Second Order Effect - Channel Length Modulation (contd.)

Finally, there are **three** important things to remember about channel-length modulation:

- The values λ and V_A are MOSFET device parameters, but drain output resistance r_o is **not** (r_o is dependent on I_{DI}).
- Often, we "neglect the effect of channel-length modulation", meaning that we use the ideal case for saturation: $I_D = I_{DI} = \mu_n C_{ox} (V_{GS} V_T)^2$. Effectively, we assume that $\lambda = 0$, meaning that $V_A = \infty$ and $V_A = 0$ and $V_A = 0$.
- The drain output resistance r_o is **not** the same as channel resistance R_{DS} . The two are different in **many, many** ways.

Second Order Effect - Channel Length Modulation (contd.)



- For a longer channel length, the relative change in L and therefore in I_D for a given change in V_{DS} is smaller.
- To minimize channel length modulation, smaller length transistors should be avoided.

Q: Any idea about limitation of long channel devices?