

Lecture – 21

Date: 09.11.2015

- Review Lecture 20
- Feedback Topologies

Indraprastha Institute of Information Technology Delhi

Quiz – 8

Q1: Calculate Loop Gain of the following network. [0.75 marks]

Q2: Determine the closed loop input impedance (R_{in,closed}) of the following network. Also identify the four elements of the feedback. [1.75 marks]

V_{DD}

Quiz – 8: Soln

Soln-1: Loop gain calculation

Quiz – 8: Soln

Soln-2:

Break the loop at the output node

Indraprastha Institute of Information Technology Delhi

ECE315 / ECE 515

Quiz – 8: Soln

Four Elements of Feedback: feed-forward amplifier consists of M₁ and R_D, the output is sensed by C₁ and C₂, the feedback network comprise of C₁, C₂, and M₂, subtraction occurs in current domain at the input

Review – Lecture 20

Input Impedance Modification

Open-loop input impedance

CG stage $(M_1) \rightarrow$ capacitive divider senses V_{out} and applies it to gate of current source $(M_2) \rightarrow M_2$ returns a current feedback signal to the input of M_1

Review – Lecture 20

Four Elements of Feedback: feed-forward amplifier consists of M₁ and R_D, the output is sensed by C₁ and C₂, the feedback network comprise of C₁, C₂, and M₂, subtraction occurs in current domain at the input

Review – Lecture 20

Output Impedance Modification

Can you identify if this is a positive feedback or negative feedback circuit? Why?

Indraprastha Institute of Information Technology Delhi

ECE315 / ECE 515

Review – Lecture 20

Bandwidth Modification

Types of Amplifiers

Type: Based on the type of parameters (current or voltage) they sense at the input and the type of parameters (current or voltage) they produce at the output

- Amplifier sensing voltage at the input: exhibit high input impedance (as a voltmeter)
- Amplifier sensing current at the input: exhibit low input impedance (as an ammeter)
- Amplifier sensing voltage at the output: exhibit low output impedance (as a voltage source)
- Amplifier sensing current at the output: exhibit high output impedance (as a current source)

Sense and Return Mechanism

- Placing a circuit in the feedback requires sensing the output signal and then returning a fraction to the input
- Voltage and Current as input and output quantities provide 4 different possibilities for feedback circuit (sense and return circuit)
- Voltage-Voltage: both the input and output of the feedback circuit is voltage
- Voltage-Current: input of feedback is voltage and output is current
- Current-Voltage: input of feedback is current and output is voltage
- Current-Current: both the input and output of feedback circuit is current

To sense a voltage:

To sense a current:

 The addition/subtraction at the input can be done in current or voltage domain: (a) currents are added by placing them in parallel;
(b) voltages are added by placing them in series

The sense and return mechanism ideally do not affect the operation of feed-forward amplifier \rightarrow in practical circuits they do introduce loading effects

Review – Lecture 20

Practical Implementations of Sensing:

Voltage Sensing

A voltage can be sensed by a resistive (or capacitive) divider in parallel with the port

Current Sensing

Practical Implementations of Voltage Subtraction:

Provides the amplified version of difference between V_{in} and the portion of V_{out}

This CS stage provides output in terms of voltage difference V_{in} - V_F $M_1 \downarrow V_F \neq R_1$

This CG stage provides output in terms of voltage difference V_{in} - V_F

Practical Implementations of Current Subtraction:

<u>Important:</u> voltage subtraction happens when they are applied to two distinct nodes whereas current subtraction happens when they are applied to a single node \rightarrow a precursor to <u>feedback topologies</u>

Feedback Topologies

- Voltage-Voltage Feedback (also called Shunt-Series Feedback): both the input and output of the feedback circuit is voltage
- Voltage-Current Feedback (also called Shunt-Shunt Feedback): input of feedback is voltage and output is current
- Current-Voltage (also called Series-Series Feedback): input of feedback is current and output is voltage
- Current-Current (also called Series-Shunt Feedback): both the input and output of feedback circuit is current

Feedback Topologies (contd.)

Voltage-Voltage Feedback (contd.)

Voltage-Voltage Feedback (contd.)

Example: Voltage-Voltage Feedback

For voltage sensing – parallel to the output node of this differential input but single ended output amplifier

The voltage signal from feedback network is fed to the other input node of the differential amplifier

Voltage-Voltage Feedback (contd.)

Voltage-Voltage Feedback (contd.)

$$\therefore R_{in,closed} = \frac{V_X}{I_X} = R_{in} (1 + \beta A_0)$$
 Increased Input
Impedance

Voltage-Voltage Feedback (contd.)

Example: calculate gain and output impedance of the following circuit

Voltage-Voltage Feedback (contd.)

Step-1: determine open-loop voltage gain

Grounding ensures there is no voltage feedback

Open-loop gain is:

$$A_0 = g_{m1} (r_{o2} || r_{o4})$$

Voltage-Voltage Feedback (contd.)

Step-2: determine the loop gain

Drain Current

Therefore,

$$\beta A_0 = \frac{C_1}{C_1 + C_2} g_{m1} (r_{o2} \parallel r_{o4})$$

$$\Rightarrow A_{closed} = \frac{A_0}{1 + \beta A_0} = \frac{g_{m1}(r_{o2} \parallel r_{o4})}{1 + \frac{C_1}{C_1 + C_2} g_{m1}(r_{o2} \parallel r_{o4})}$$

Voltage-Voltage Feedback (contd.)

• For
$$\beta A_0 >> 1$$
,

$$A_{closed} \simeq \frac{g_{m1}(r_{o2} \parallel r_{o4})}{\frac{C_1}{C_1 + C_2} g_{m1}(r_{o2} \parallel r_{o4})} = 1 + \frac{C_2}{C_1}$$

• The closed-loop output impedance,

$$R_{out,closed} = \frac{R_{out,open}}{1 + \beta A_0} = \frac{\left(r_{o2} \parallel r_{o4}\right)}{1 + \frac{C_1}{C_1 + C_2} g_{m1}\left(r_{o2} \parallel r_{o4}\right)}$$

• For
$$\beta A_0 >> 1$$
,

$$R_{out,closed} \simeq \underbrace{\left(1 + \frac{C_2}{C_1}\right)}_{g_{m1}} \bigoplus \begin{array}{c} \text{Relatively Smaller} \\ \text{Value} \end{array}$$