

<u>Lecture – 19</u>

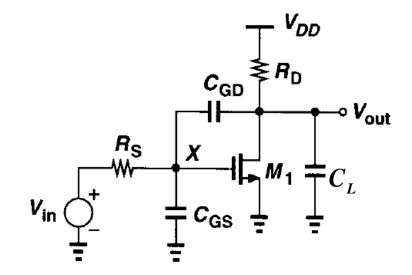
Date: 31.10.2015

- CS Stage (contd.)
- CS stage with Degeneration Resistor R_{deg}
- Common Drain (CD) Stage
- Common Gate Topology
- Cascode Configuration

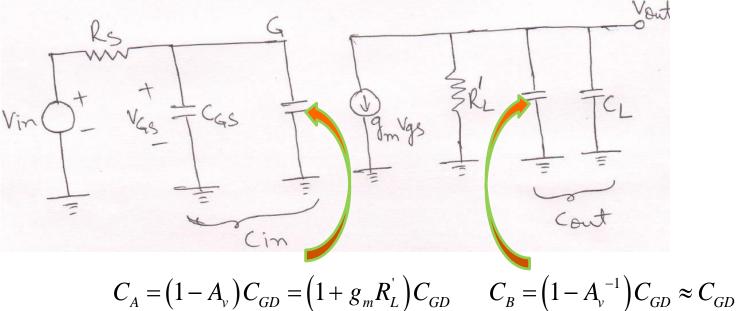
Quiz – 6

Q: For the CS Topology, find the poles and zeros using Miller's Approximation, OCTC, and Exact Analysis.

ECE315/515



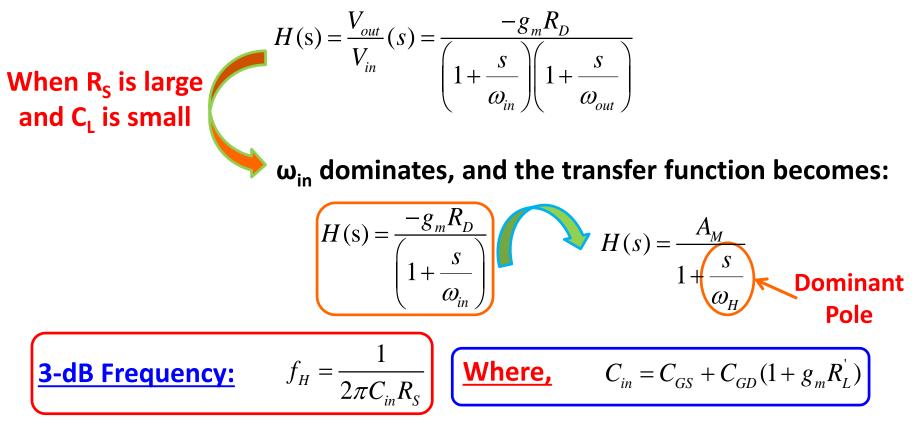
Analysis using Miller's Approximation



Therefore the poles are:

$$\omega_{in} = \frac{1}{R_S C_{in}} = \frac{1}{R_S (C_{GS} + C_A)} = \frac{1}{R_S (C_{GS} + (1 + g_m R_L) C_{GD})}$$
$$\omega_{out} = \frac{1}{R_L C_{out}} = \frac{1}{R_L (C_L + C_B)} = \frac{1}{R_L (C_L + C_{GD})}$$

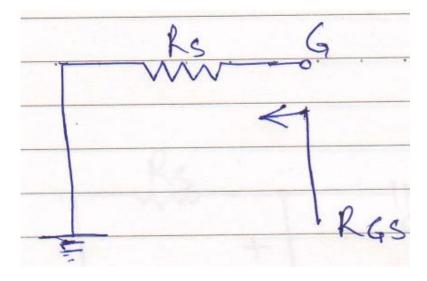
Then the transfer function is given by:



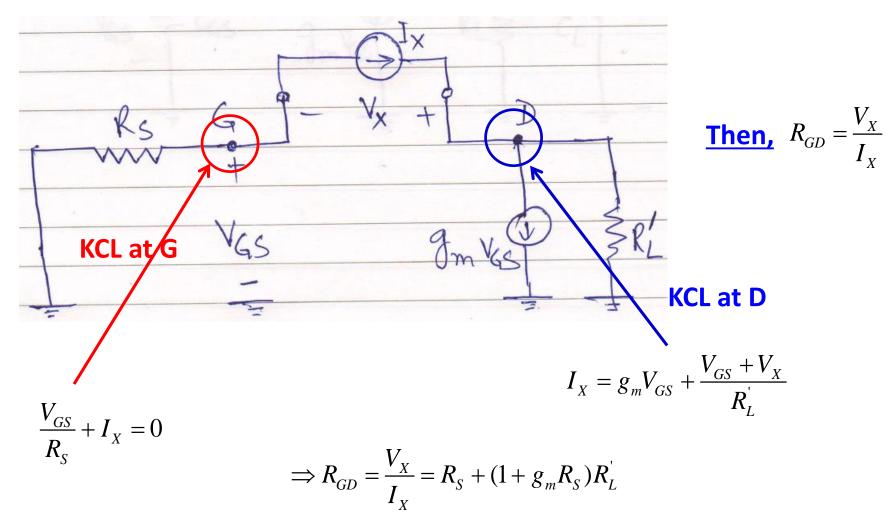
The main error in this expression is that the presence of zero has not been considered

Analysis using OCTC Method

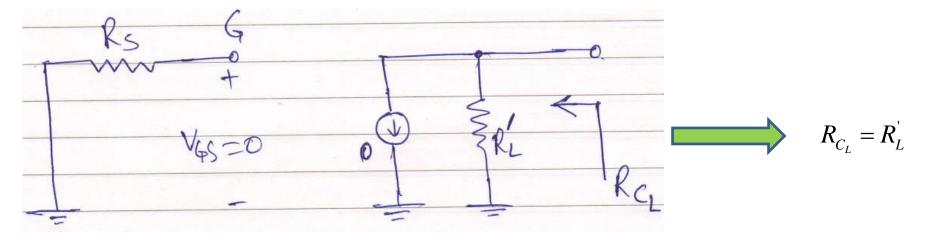
- Considering only C_{GS} → open other capacitances and short the voltage sources and open the current sources
- For R_{GS} we get:



Considering only C_{GD} → open C_{GS} and C_L



• Considering only $C_L \rightarrow$ open C_{GS} and C_{GD}



Thus, the effective time constant: $\tau_H = C_{GS}R_{GS} + C_{GD}R_{GD} + C_LR_{C_L}$

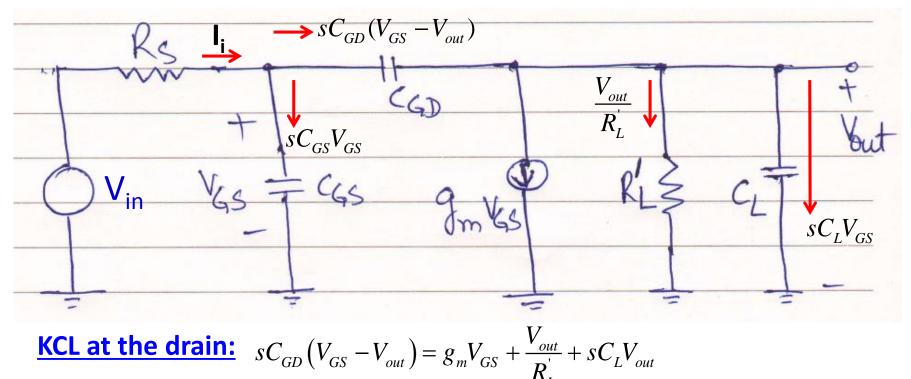
Therefore the 3-dB roll-off frequency is: $f_H =$

$$f_{H} = \frac{1}{2\pi\tau_{H}}$$

Provides a better estimate than Miller's approximation

Exact Analysis

- Miller's Approximation and OCTC Technique provides insight about the impact of various capacitances on the high frequency response of amplifier
- However, for simple circuits its imperative to carry out exact analysis



Indraprastha Institute of Information Technology Delhi

ECE315/515

Common Source Amplifier (contd.)

KCL at the drain:
$$sC_{GD}(V_{GS} - V_{out}) = g_m V_{GS} + \frac{V_{out}}{R'_L} + sC_L V_{out}$$

 $V_{GS} = \frac{-V_{out}}{g_m R'_L} \frac{1 + s(C_L + C_{GD})R'_L}{1 - (sC_{GD} / g_m)}$
KVL at the gate: $V_{in} = I_i R_S + V_{GS}$
 $I_i = sC_{GS} V_{GS} + sC_{GD}(V_{GS} - V_{out})$
 $V_{in} = V_{GS} [1 + s(C_{GS} + C_{GD})R_S] - sC_{GD}R_S V_{out}$

Observations

- There exists one zero → not known through the approximate analysis
- 2nd order denominator [D(s)] → presence of two poles
- There are three capacitances → why only two poles and one zero

Poles Determination

• As s → 0, the transfer function approaches:

$$\Rightarrow \frac{V_{out}}{V_{in}} = -(g_m R_L) \text{ DC Gain}$$

- Let ω_{p1} and ω_{p2} be the two poles then: $D(s) = \left(1 + \frac{s}{\omega_{p1}}\right) \left(1 + \frac{s}{\omega_{p2}}\right) = 1 + s \left(\frac{1}{\omega_{p1}} + \frac{1}{\omega_{p2}}\right) + \frac{s^2}{\omega_{p1}\omega_{p2}}$
- If ω_{p1} is dominant then: $D(s) \cong 1 + \frac{s}{\omega_{p1}} + \frac{s^2}{\omega_{p1}\omega_{p2}}$

 R_L

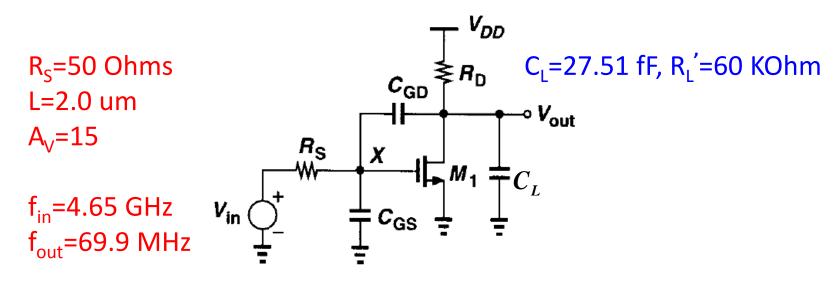
Common Source Amplifier (contd.)

• Now, equating the coefficients:

$$\omega_{p1} = \frac{1}{\left[C_{GS} + C_{GD}\left(1 + g_{m}R_{L}^{'}\right)\right]R_{S} + (C_{L} + C_{GD})R_{L}^{'}}$$
$$\omega_{p1}\omega_{p2} = \frac{1}{\left[\left(C_{L} + C_{GD}\right)C_{GS} + C_{L}C_{GD}\right]R_{S}R_{L}^{'}}$$
$$\Rightarrow \omega_{p2} = \frac{\left[C_{GS} + C_{GD}\left(1 + g_{m}R_{L}^{'}\right)\right]R_{S} + (C_{L} + C_{GD})}{\left[\left(C_{L} + C_{GD}\right)C_{GS} + C_{L}C_{GD}\right]R_{S}R_{L}^{'}}$$

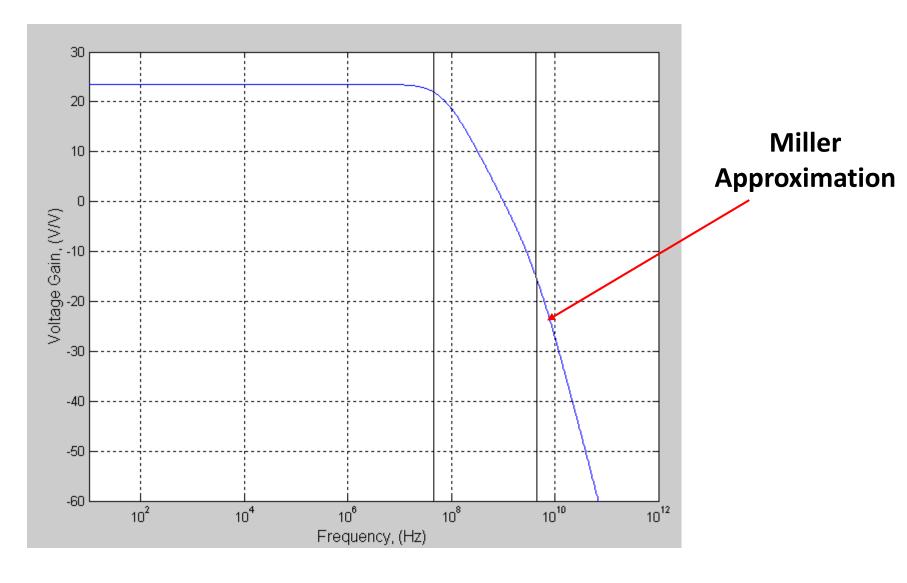
Very similar to the pole determined using OCTC method with the only addition being $R_L'(C_{GD} + C_L)$

Example:

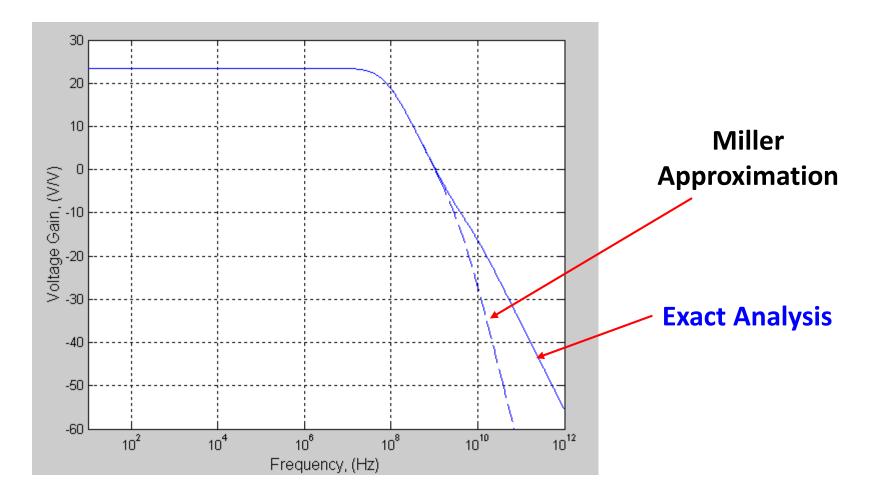


$$\omega_{in} = \frac{1}{R_{S} \left(C_{GS} + \left(1 + g_{m} R_{L}^{'} \right) C_{GD} \right)} \qquad \qquad \omega_{out} = \frac{1}{R_{L}^{'} \left(C_{L} + C_{GD} \right)}$$

Transfer Function



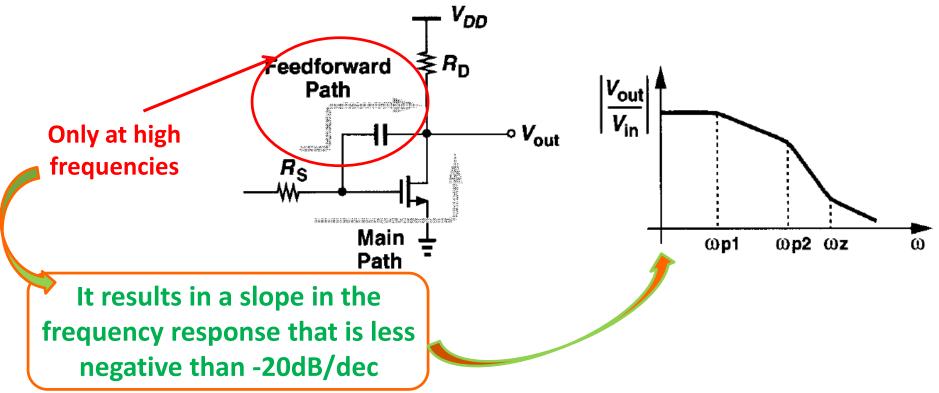
Transfer Function



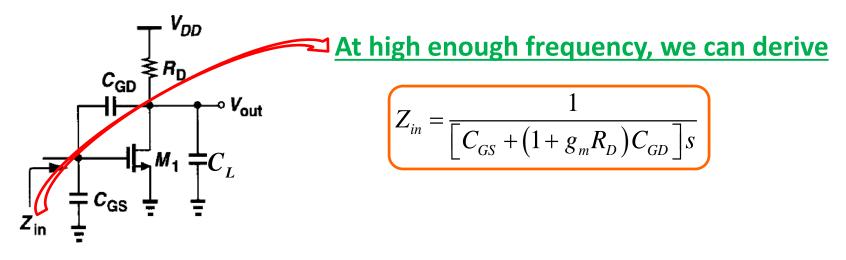
• There exists one zero given by:

$$\omega_{z1} = \frac{g_m}{C_{GD}}$$

- This zero results from the direct coupling of the input and output through C_{GD} at high frequencies
- the capacitor provides a feed-forward path

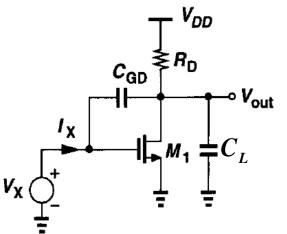


 In high speed applications, the <u>input impedance</u> of the common source stage is extremely important



But at extremely high frequencies where Miller's approximation doesn't give appropriate performance, it's a must to take into account the contribution of output node Indraprastha Institute of Information Technology Delhi

Common Source Amplifier (contd.)



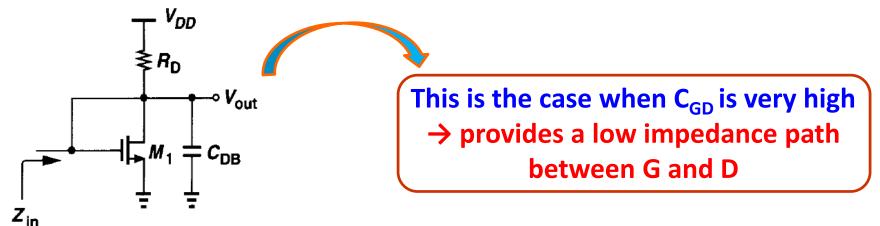
For simplification, C_{GS} has been ignored <u>Using small signal model:</u>

 $\frac{V_X}{I_X} = \frac{1 + R_D (C_{GD} + C_{DB})s}{C_{GD} s [(1 + g_m R_D + R_D C_L s)]}$

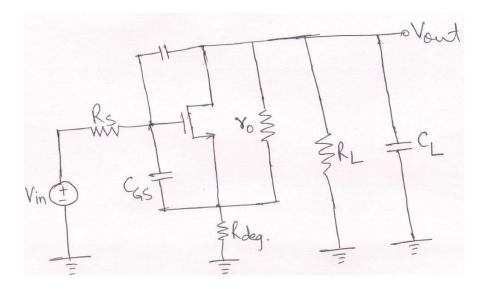
Therefore:

$$Z_{in} = X_{C_{GS}} \parallel \frac{V_X}{I_X}$$

At extremely high frequency



CS Amplifier with Source Degeneration



<u>We know,</u>

$$R_{out} = r_o \left[1 + \left(g_m + g_{mb} \right) R_{deg} \right]$$

$$G_m = \frac{g_m}{1 + (g_m + g_{mb})R_{deg}}$$

- To determine the effective time constant, use OCTC by considering one capacitor at a time.
- Consider C_{GD} first: $R_{GD} = R_S (1 + G_m R_L) + R_L$ When

 $\underline{\mathbf{Where}}, \quad R_{L}^{'} = R_{L} \parallel R_{out}$

• Then Consider C_L : $R_{C_L} = R_L || R_{out} = R_L'$

Indraprastha Institute of Information Technology Delhi

ECE315/515

CS Amplifier with Source Degeneration (contd.)

- Finally Consider C_{GS}: $R_{GS} = \frac{R_S + R_{deg}}{1 + (g_m + g_{mb})R_{deg}} \left(\frac{r_o}{r_o + R_L}\right)$
 - Now, the effective time constant:

$$\tau_H = C_{GS} R_{GS} + C_{GD} R_{GD} + C_L R_{C_L}$$

For relatively large R_s the contribution of C_{GD}R_{GD} in open circuit time constants (τ_H) will be largest.

$$\Rightarrow \tau_H = C_{GD} R_{GD} \qquad \qquad \therefore f_H \cong \frac{1}{2\pi C_{GD} R_{GD}}$$

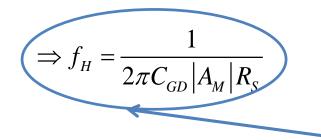
Comment

шп

- If R_{deg} is increased → the mid-band gain A_M will decrease → this causes reduction in R_{GD} → as a result f_H increases
- As G_mR_L' >>1 and G_mR_S>>1 the term R_{GD} can be approximated as:

$$R_{GD} \cong G_m R_L R_S = \left| A_M \right| R_S$$

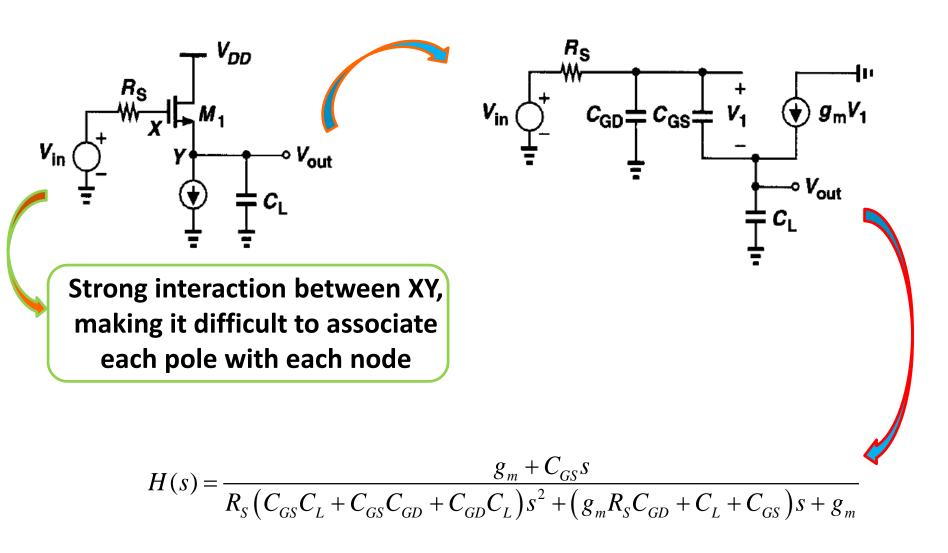
CS Amplifier with Source Degeneration (contd.)



Gain bandwidth product $(f_H, |A_M|)$ remains constant for fixed $R_s \rightarrow$ however other capacitances make it variable

ECE315/515

Common Drain



Common Drain

$$H(s) = \frac{g_m + C_{GS}s}{R_S(C_{GS}C_L + C_{GS}C_{GD} + C_{GD}C_L)s^2 + (g_mR_SC_{GD} + C_L + C_{GS})s + g_m}$$

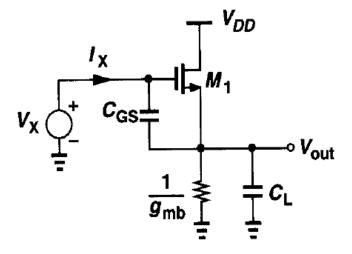
$$D = \left(\frac{s}{\omega_{p1}} + 1\right)\left(\frac{s}{\omega_{p2}} + 1\right) = \frac{s^2}{\omega_{p1}\omega_{p2}} + \left(\frac{1}{\omega_{p1}} + \frac{1}{\omega_{p2}}\right)s + 1$$
Dominant Pole
$$\omega_{p1} \approx \frac{g_m}{g_mR_SC_{GD} + C_L + C_{GS}} = \frac{1}{R_SC_{GD} + \frac{C_L + C_{GS}}{g_m}}$$

If, R_s = 0: then

$$\omega_{p1} = \frac{g_m}{C_L + C_{GS}}$$

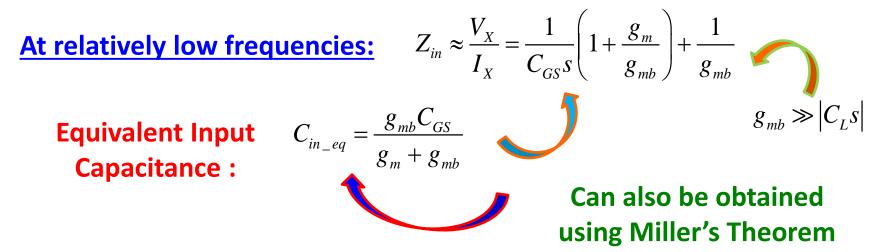
Common Drain Amplifier (contd.)

Input Impedance



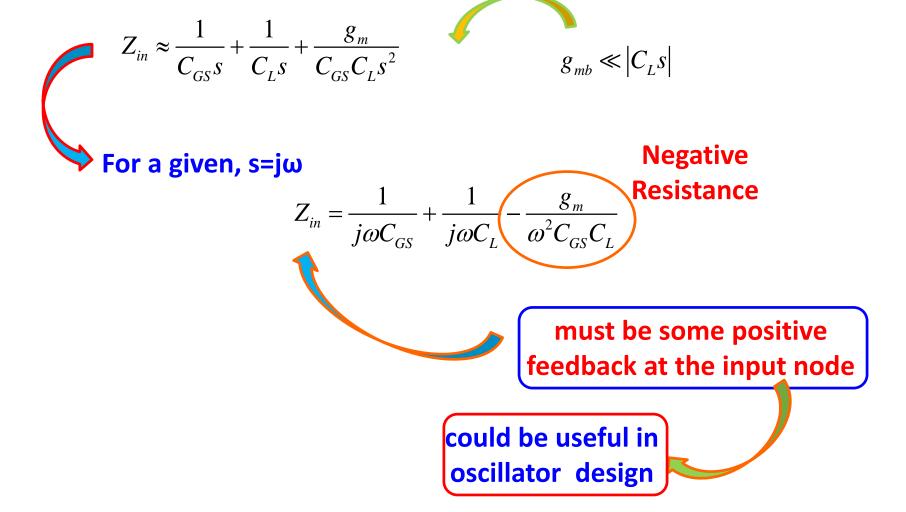
$$V_X = \frac{I_X}{C_{GS}s} + \left(I_X + \frac{g_m I_X}{C_{GS}s}\right) \left(\frac{1}{g_{mb}} \| \frac{1}{C_L s}\right)$$
$$= V_X - 1 - \left(I_X + \frac{g_m I_X}{C_{GS}s}\right) - 1$$

$$Z_{in} = \frac{V_X}{I_X} = \frac{1}{C_{GS}s} + \left(1 + \frac{g_m}{C_{GS}s}\right) \frac{1}{g_{mb} + C_L s}$$



Common Drain Amplifier (contd.)

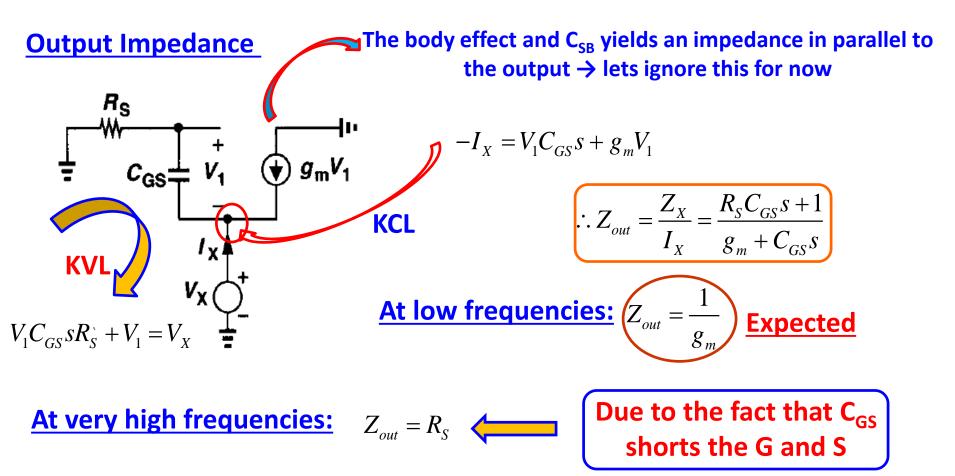
At high frequencies:



Indraprastha Institute of Information Technology Delhi

ECE315/515

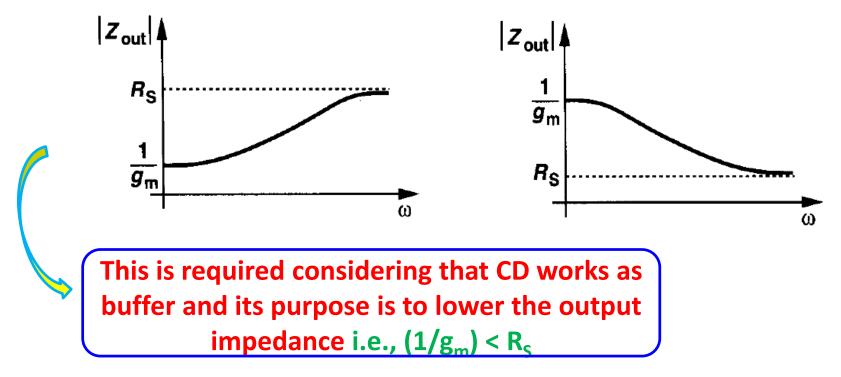
Common Drain Amplifier (contd.)



Indraprastha Institute of Information Technology Delhi

ECE315/515

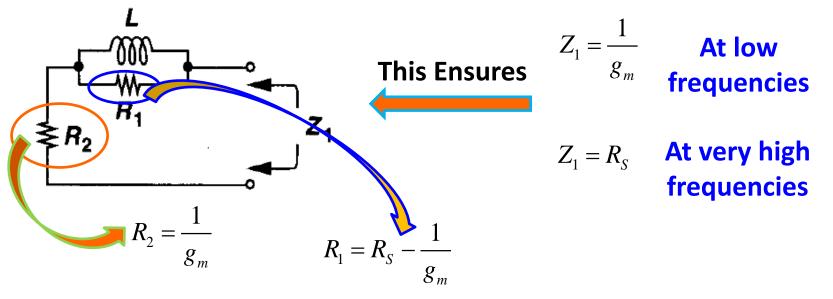
Common Drain Amplifier (contd.)



The output impedance increases with frequency ↔ clear indication of the presence of inductive element

Common Drain Amplifier (contd.)

Output Network – first order model



• For the determination of <u>L</u>, equate the Z₁ expression to that of Z_{out}

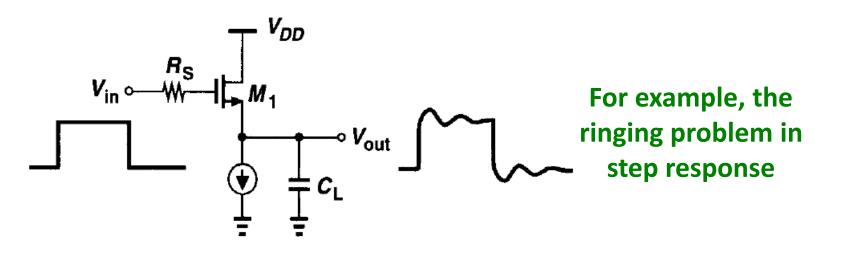
$$L = \frac{C_{GS}}{g_m} \left(R_s - \frac{1}{g_m} \right)$$

Common Drain Amplifier (contd.)

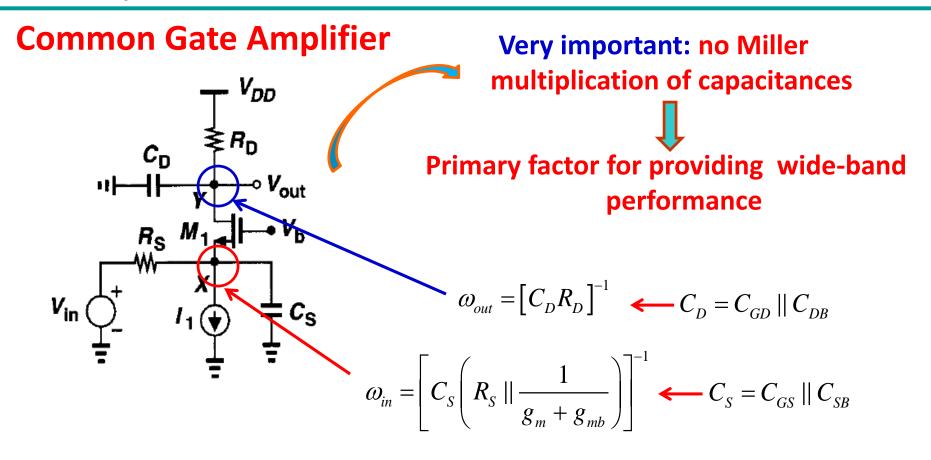
$$L = \frac{C_{GS}}{g_m} \left(R_S - \frac{1}{g_m} \right)$$

Its apparent that if a CD stage is driven by a R_s, then it exhibits inductive behavior at the output

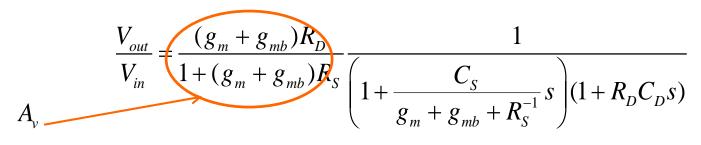
It has detrimental effect on the output characteristics



Indraprastha Institute of Information Technology Delhi



Therefore the transfer function:



Common Gate Amplifier (contd.)

- If we consider channel length modulation → not easy to associate a pole to the input node → direct analysis of the network is needed to determine the transfer function
- The low input impedance of may load the preceding stage
- The voltage drop across RD is typically maximized to obtain a reasonable gain, therefore the dc level of input signal must be low
- CG stage with relatively large capacitance at the input → possesses low output impedance → good for cascode configuration

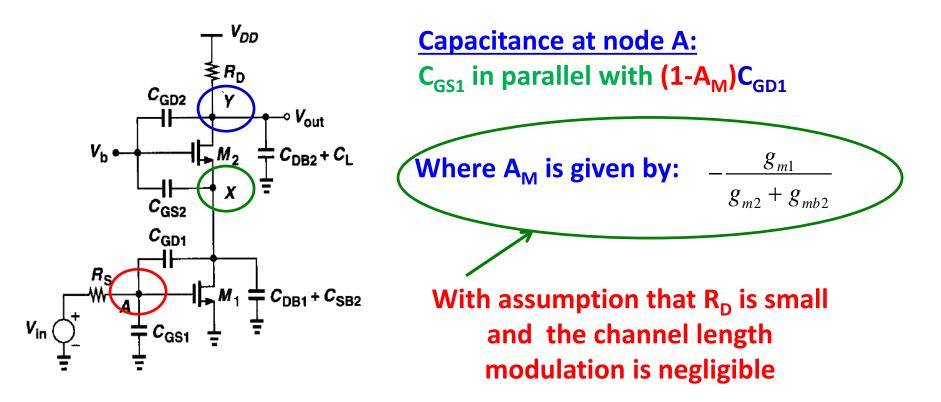
Cascode Stage

Why do we need cascode stage?

- High input impedance good in a sense that it doesn't disturb the previous stage and doesn't get affected by the previous stage
- High gain important any way!
- Relatively higher output impedance doesn't disturb the succeeding stages
- How about freq response?
 - Provides a broader bandwidth of operation →due to CG stage (no Miller approximation of intrinsic capacitor) → it was the initial motivating factor for cascode stage!!!

Indraprastha Institute of Information Technology Delhi

Cascode Stage (contd.)



For equal dimensions of M_1 and M_2 : A_M approximately equals $1 \rightarrow$ therefore C_{GD} gets multiplied by a factor of roughly 2 both at node A as well as at node X \rightarrow much smaller multiplication factor as compared to a single CS stage

ECE315/515

Cascode Stage (contd.)

Therefore the pole associated with node A is:

Capacitance at node X: 2C_{GD1} + C_{DB1} + C_{SB2} + C_{GS2}

Therefore the pole associated with node X is:

$$\omega_{p,A} = \frac{1}{R_{S} \left[C_{GS1} + \left(1 + \frac{g_{m1}}{g_{m2} + g_{mb2}} \right) C_{GD1} \right]}$$

$$\omega_{p,X} = \frac{g_{m2} + g_{mb2}}{2C_{GD1} + C_{DB1} + C_{SB2} + C_{GS2}}$$

Capacitance at node Y:

 $C_{DB2} + C_{L} + C_{GD2}$

Therefore the pole associated with node Y is:

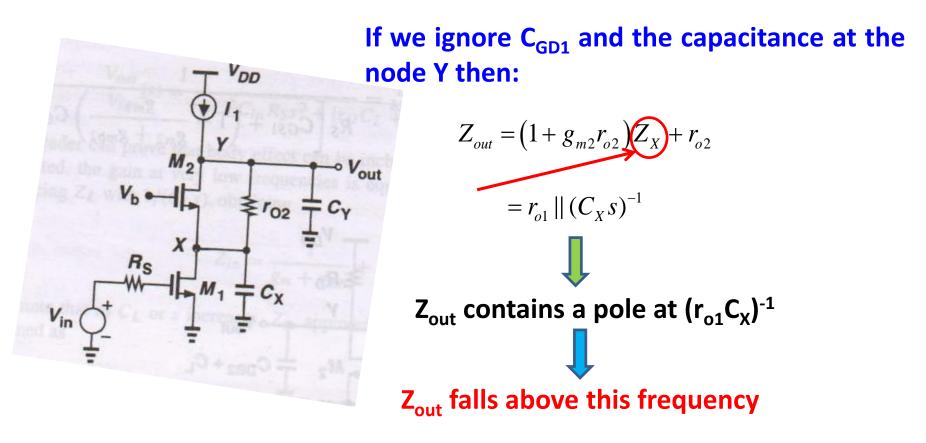
$$\omega_{p,Y} = \frac{1}{R_D \left(C_{DB2} + C_L + C_{GD2} \right)}$$

- Do you have any control on the choice of poles?
- <u>Yes</u> → through selection of appropriate devices
- Usually $\omega_{p,X}$ is chosen very high \rightarrow to obtain better stability

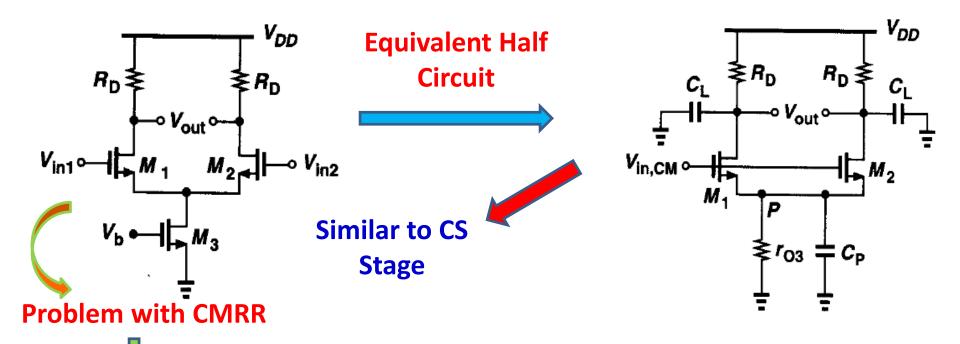
Cascode Stage (contd.)

 Instead of R_D → if a constant current source is used → what happens? → do the designer have control on the choice of poles?

How about output impedance?



Differential Pair



To minimize voltage headroom consumed by $M_3 \rightarrow its$ width is maximized \rightarrow increases the capacitance contribution by $M_3 \rightarrow$ higher capacitance at the source of M_1 and $M_2 \rightarrow$ degrades the differential gain of M_1 and M_2 at high frequencies \rightarrow reduces the CMRR at high frequencies