

# <u>Lecture – 18</u>

# Date: 29.10.2015

- General Frequency Response
- High Frequency MOSFET Model
- Transit Frequency
- Determination of 3-dB Frequency
- CS Stage Analysis using Miller's Approximation, OCTC Method, Exact Technique

Indraprastha Institute of Information Technology Delhi

# Quiz – 5

Q1: Through appropriate derivations, prove that the input resistance, R<sub>in</sub>, of this circuit is extremely high. (0.75 marks)

Q2: what is the need of input capacitance  $C_i$  in the following circuit. Give appropriate examples to justify your answer. (0.75 marks)





Q3: Use Miller's theorem to determine the poles and transfer function of the following network. (1.0 marks)



# ECE315/515



#### ECE315/515

Indraprastha Institute of Information Technology Delhi

#### **General Frequency Response**



High quality audio amplifier:  $R_i$  establishes a gate bias voltage equal to  $V_{DD}$  for  $M_1$ , and  $I_1$ defines the drain bias current. Assume  $\lambda=0$ ,  $g_m=1/(200\Omega)$ , and  $R_i=100k\Omega$ . Determine the minimum required value of  $C_i$  and the maximum tolerable value of  $C_i$ 

• The input network consisting of R<sub>i</sub> and C<sub>i</sub> attenuates the signal at low frequencies. The roll-off frequency for audio signal is given as:

$$2\pi * (20Hz) = \frac{1}{R_i C_i} = \frac{1}{100 * 10^3 * C_i}$$
  $\therefore C_i = 79.6nF$  Min. Value

 The load capacitance creates a pole at the output node, lowering the gain at the high frequencies. Let us suppose pole frequency at 20kHz (upper end of audio):

$$\omega_{p,out} = \frac{g_m}{C_L} = 2\pi * 20 * 10^3$$





# **General Frequency Response (contd.)**

Why do we need capacitor C<sub>i</sub> at the input in the previous example?

The absence of  $C_i$  could be blessing as it will not affect the performance at low frequencies  $\rightarrow$  we would be saved from computing  $C_i$  as well



- Capacitive coupling, also known as AC coupling, passes AC signals from Y to X while blocking DC contents.
- This technique allows independent bias conditions between stages. Direct coupling does not.



#### **General Frequency Response (contd.)**





# **High Frequency MOSFET Model**





#### **Cut-off Frequency or Transit Frequency**

- So many capacitances in the MOSFET reduces the performance of amplifiers  $\rightarrow$  cut-off or transit frequency, f<sub>T</sub>, regulates the speed of MOSFET
- It is the frequency at which the small-signal current gain falls to unity



The source-bulk and drain-bulk capacitance doesn't affect the speed of transistor



# **Determination of 3-dB frequency (f<sub>H</sub>)**

- As a designer it is important to understand the implications of various capacitive effects (present in the circuit) on the overall performance of the circuit
- In order to understand such implications there are three different techniques to determine f<sub>H</sub> (a key parameter in high frequency performance estimation)
- Miller's Approximation Technique: It is useful for certain cases when the input resistance is relatively large and output capacitance (C<sub>L</sub>) is relatively small → in such a case the high-frequency response is dominated by the pole formed at the input node
- OCTC Method: Its useful for circuits when its not easy to determine the poles and zeros by hand analysis → is an approximate method
- Exact Analysis: Involves full analysis of the circuit to find the transfer function

# Determination of 3-dB frequency (f<sub>H</sub>) – contd.

**Physical Significance of Poles and Zeros in a Transfer Function:** 

- Think of Poles and Zeros as INFINITY's and ZEROs.
- At Zeros: the system produces ZERO output
- At Poles: the system produces INFINITE output
- Obviously, you cannot produce infinite voltage with any electronics

→ So, it means that, the output will be unbounded (in theory) and saturated at the highest possible value (in practice).

Now, let's talk about a specific case: The TRANSFER FUNCTION can be the IMPEDANCE of a filter, it will be zero (short circuit) at zeros, and INFINITY (open circuit) at poles



#### **Miller Approximation Technique**

• High Frequency Gain function of an amplifier can be given as:

 $\neg_H(s)$ 

Mid-band gain → small-signal gain

A(s)

• F<sub>H</sub>(s) can be represented in terms of poles and zeros as:

$$F_{H}(s) = \frac{(1 + s / \omega_{z1})(1 + s / \omega_{z2})....(1 + s / \omega_{zn})}{(1 + s / \omega_{p1})(1 + s / \omega_{p2})....(1 + s / \omega_{pn})}$$

• If a dominant pole  $(\omega_{p1})$  exists then:

$$F_H(s) \cong \frac{1}{\left(1 + s / \omega_{p1}\right)}$$

Assuming that zeros are usually either at infinity or possess very high value

**Transfer function of amp** 



### Miller Approximation Technique (contd.)

• Thus presence of a dominant pole provides 3-dB roll-off frequency as:

$$\omega_{H} \cong \omega_{p1}$$

- Condition for the existence of dominant pole: the lowest-frequency pole is at least two octave away from the nearest pole or zero.
- If a dominant pole doesn't exist then:

$$F_{H}(s) = \frac{(1+s / \omega_{z1})(1+s / \omega_{z2})}{(1+s / \omega_{p1})(1+s / \omega_{p2})}$$
For 2-pole and 2-zero  
network

$$\Rightarrow F_{H}(j\omega) = \frac{\left(1 + j\omega / \omega_{z1}\right)\left(1 + j\omega / \omega_{z2}\right)}{\left(1 + j\omega / \omega_{p1}\right)\left(1 + j\omega / \omega_{p2}\right)}$$

Indraprastha Institute of Information Technology Delhi

#### Miller Approximation Technique (contd.)

$$\Rightarrow \left| F_H(j\omega) \right|^2 = \frac{\left( 1 + \omega^2 / \omega_{z_1}^2 \right) \left( 1 + \omega^2 / \omega_{z_2}^2 \right)}{\left( 1 + \omega^2 / \omega_{p_1}^2 \right) \left( 1 + \omega^2 / \omega_{p_2}^2 \right)}$$

• For  $\omega = \omega_H \rightarrow |F_H|^2 = 1/2$  and therefore:

$$\Rightarrow \frac{1}{2} = \frac{\left(1 + \omega_H^2 / \omega_{z1}^2\right) \left(1 + \omega_H^2 / \omega_{z2}^2\right)}{\left(1 + \omega_H^2 / \omega_{p1}^2\right) \left(1 + \omega_H^2 / \omega_{p2}^2\right)}$$

•  $\omega_{H}$  is smaller than all other poles and zeros and as a consequence terms with  $\omega_{H}^{4}$  could be neglected. Therefore simplification gives:

$$\omega_{H} \cong \frac{1}{\sqrt{\left(\frac{1}{\omega_{p1}^{2}} + \frac{1}{\omega_{p2}^{2}}\right) - 2\left(\frac{1}{\omega_{z1}^{2}} + \frac{1}{\omega_{z2}^{2}}\right)}}$$



# **Open Circuit Time Constant (OCTC) Method**

- Its not always straightforward to apply Miller technique and determine the poles and zeros
- In such cases OCTC method prove handy
- Alternate form of F<sub>H</sub>(s) for n-zero and n-pole network is:

$$F_{H}(s) = \frac{1 + a_{1}s + a_{2}s^{2} + \dots + a_{n}s_{n}}{1 + b_{1}s + b_{2}s^{2} + \dots + b_{n}s_{n}}$$

Where, **a** and **b** are related to zeros and poles respectively. For example,  $b_1$  is given by:

$$b_1 = \frac{1}{\omega_{p1}} + \frac{1}{\omega_{p2}} + \dots + \frac{1}{\omega_{pn}}$$

Ref: Paul E. Gray and Campbell L. Searle, Electronic Principles: Physics, Models, and Circuits (1969), John Wiley & Sons Inc., New York



#### **Open Circuit Time Constant (OCTC) Method (contd.)**

$$b_1 = \frac{1}{\omega_{p1}} + \frac{1}{\omega_{p2}} + \dots + \frac{1}{\omega_{pn}}$$

- b<sub>1</sub> can be determined by considering various capacitances in the network one at a time while reducing all other capacitors to zero i.e, replacing them with open circuits
- Determine C<sub>i</sub>R<sub>i</sub> for each capacitors and then compute:

$$b_1 = \sum_{i=1}^n C_i R_i$$

• If one of the poles is dominant (say P1) then:

$$b_1 \cong \frac{1}{\omega_{p1}} \implies \omega_H \simeq \frac{1}{b_1} = \frac{1}{\sum_i C_i R_i}$$



# **Open Circuit Time Constant (OCTC) Method (contd.)**

#### **Advantage of OCTC method:**

- It tells the circuit designer which of the various capacitances is significant in determining the network (amplifier) frequency response
- The relative contribution of the various capacitances to the effective time constant b<sub>1</sub> is immediately obvious
- For example, if in any amplifier the contribution of  $C_{GD}R_{GD}$  in the overall time constant is maximum  $\rightarrow$  then  $C_{GD}$  is dominant capacitor in determining  $f_H \rightarrow$  to increase  $f_H$ , either use MOSFET with smaller  $C_{GD}$  or for a given MOSFET reduce  $R_{GD}$  by either reducing the load impedance or by employing smaller source impedance  $\rightarrow$  furthermore, if source impedance is also fixed then the only way to increase  $f_H$  (and hence the bandwidth) is by reducing the load impedance
- Reduction in load impedance  $\rightarrow$  leads to reduction in  $A_M$



ECE315/515

#### **Common Source Amplifier**





#### **Common Source Amplifier Trade-Offs**



same time!





- R<sub>s</sub>: also includes the resistance due to the biasing network
- $R_L$ : includes  $R_D \rightarrow$  usually  $R_L$  is of the order of  $r_o$
- C<sub>L</sub>: represents the total capacitance between the drain and the ground → includes C<sub>DB</sub> and input capacitance of succeeding amplifier stage → C<sub>L</sub> in an IC is substantial



**Analysis using Miller's Approximation** 



**Therefore the poles are:** 

$$\omega_{in} = \frac{1}{R_S C_{in}} = \frac{1}{R_S (C_{GS} + C_A)} = \frac{1}{R_S (C_{GS} + (1 + g_m R_L) C_{GD})}$$
$$\omega_{out} = \frac{1}{R_L C_{out}} = \frac{1}{R_L (C_L + C_B)} = \frac{1}{R_L (C_L + C_{GD})}$$



Then the transfer function is given by:



The main error in this expression is that the presence of zero has not been considered



**Analysis using OCTC Method** 

- Considering only C<sub>GS</sub> → open other capacitances and short the voltage sources and open the current sources
- For R<sub>GS</sub> we get:







#### ECE315/515

# **Common Source Amplifier (contd.)**

• Considering only  $C_{GD} \rightarrow open C_{GS}$  and  $C_{L}$ 





#### ECE315/515

# **Common Source Amplifier (contd.)**

• Considering only  $C_L \rightarrow$  open  $C_{GS}$  and  $C_{GD}$ 



Thus, the effective time constant:  $\tau_H = C_{GS}R_{GS} + C_{GD}R_{GD} + C_LR_{C_L}$ 

Therefore the 3-dB roll-off frequency is:  $f_H =$ 

$$f_H = \frac{1}{2\pi\tau_H}$$

Provides a better estimate than Miller's approximation