

<u> Lecture – 16</u>

Date: 12.10.2015

- Differential Pair with Active Load
- Differential Pair with Current Mirror
- Gilbert Cell

Differential Amplifier with Active Load

- By now we know, the load resistors in differential pair can be replaced by diode-connected or source-connected loads
- It can help in mitigating the common-mode to differential conversion arising out from R_D mismatch

Its easier to define output CM level as M₃/M₄ are in saturation by default

M₃/M₄ are not in saturation by default & therefore output CM level not well defined

Differential Pair with Active Load

• Using half-circuit approach:

Indraprastha Institute of Information Technology Delhi

Gilbert Cell

- Two important aspects of differential pair
- small signal gain is function of tail current
- the whole tail current can be steered to one of two paths by some means
- These features can be utilized to design very interesting and useful circuit known as Gilbert Cell [a differential pair whose gain can be varied by control voltage]

Gilbert Cell (contd.)

- Suppose we require an amplifier whose gain can be continuously varied from a NEGATIVE value to a POSITIVE value.
- Definitely, two VGA with opposite gains.

How to combine V_{out1} and V_{out2} in a single output?

ECE315/515

Gilbert Cell (contd.)

How to combine V_{out1} and V_{out2} in a single output?

Active Current Mirror

• We know: CM can also process signals i.e, operate as "active" elements

Here,
$$I_{out} = I_{in}$$
 if we assume M_1 and M_2
are identical and $\lambda = 0$

With the direction shown, this circuits performs no inversion \rightarrow for small signal point of view, if I_{in} increases by ΔI then I_{out} also increases by ΔI

Active Current Mirror (contd.)

• Now, let us consider following configuration in which a differential amplifier is loaded with a CM and the output is single ended

Active Current Mirror (contd.)

• For output impedance, the circuit can be simplified into following:

In this configuration, the small-signal drain current of M_1 is wasted \rightarrow this is partly responsible for reduction in gain

ECE315/515

Active Current Mirror (contd.)

- Therefore it is desirable to utilize the drain current of M₁ to enhance A_v
- Following configuration depicts a scenario:

To see how M3 enhances the gain

Suppose V_{G1} increases by small amount \rightarrow leads to increase in I_{D1} by ΔI and decrease in I_{D2} by ΔI $\rightarrow I_{D3}$ and I_{D4} increases by ΔI and decreases the V_{DS} of $M_2 \rightarrow$ increases $V_{out} \rightarrow$ active current mirror functionality

Active Current Mirror (contd.)

Combine Drain Currents to Enhance Gain

Indraprastha Institute of Information Technology Delhi

Active Current Mirror (contd.)

Small Signal Analysis

The effects of V_x and V_y are different at node P ↔ therefore the node P isn't really ac-grounded

ECE315/515

Active Current Mirror (contd.)

Small Signal Analysis

Indraprastha Institute of Information Technology Delhi

ECE315/515

Active Current Mirror (contd.)

Indraprastha Institute of Information Technology Delhi

ECE315/515

Active Current Mirror (contd.)

Common Mode Analysis

Even with perfect symmetry, the output signal will be corrupted by input CM variations, a drawback that is smaller in fully differential circuits. The problem will be more serious at high frequencies