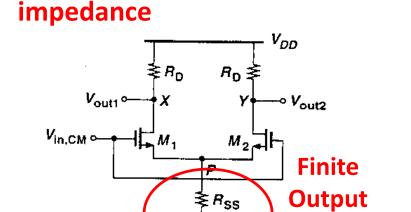
Date: 10.10.2015

Lecture – 15


Common Mode Rejection Ratio

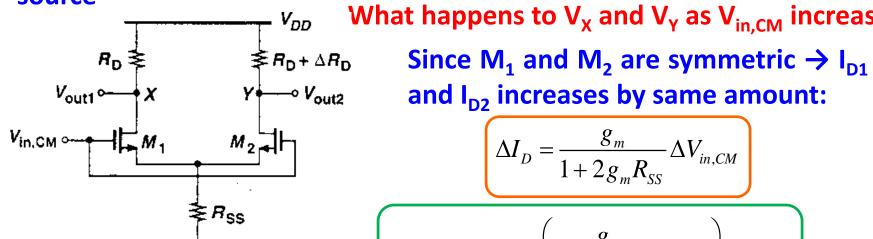
MOS Differential Pair – Common Mode Response

Quantitative Analysis

- In ideal condition, differential pair has the ability to suppress variations in the common-mode voltage
- However, in practical scenarios there is always some CM output

<u>Case-I:</u> differential pair is symmetric but the current source has finite output

 $A_{v,CM} = \frac{V_{out}}{V_{in,CM}} = -\frac{R_D/2}{1/(2g_m) + R_{SS}} = -\frac{g_m R_D}{1 + 2g_m R_{SS}}$


Impedance

Symmetry
allows shorting
of node X and Y
as $V_X = V_Y$ $V_{in,CM} \sim V_{in,CM}$ $M_1 + M_2$ R_{SS}

■ This shows that in a symmetric differential pair, input CM variations disturb the bias points that results into some common-mode gain

MOS Differential Pair – Common Mode Response (contd.)

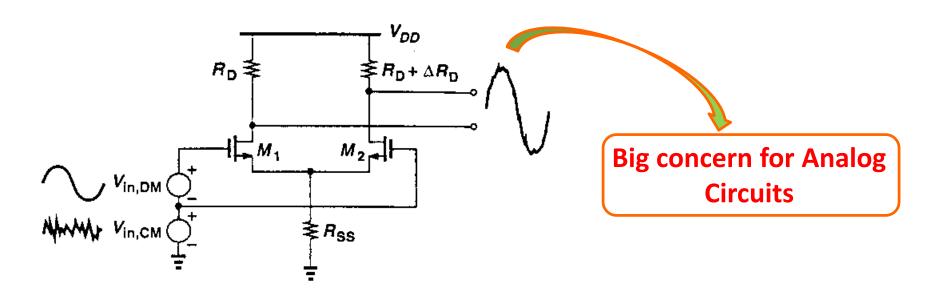
Case-II: Effect of input common-mode variation when there is mismatch in R_D and the differential pair suffers from finite output impedance of current source

What happens to V_X and V_Y as $V_{in,CM}$ increases?

$$\Delta I_D = \frac{g_m}{1 + 2g_m R_{SS}} \Delta V_{in,CM}$$

$$\left(\therefore \Delta V_X - \Delta V_Y = \left(\frac{g_m}{1 + 2g_m R_{SS}} \Delta R_D \right) \Delta V_{in,CM} \right)$$

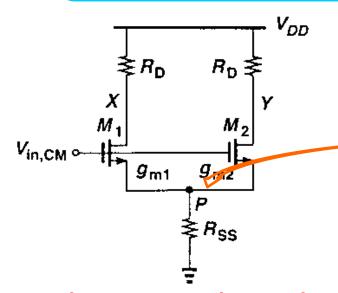
It is apparent that a small common-mode input can generate a differential mode output → usually denoted by a metric called A_{CM-DM}


$$A_{CM-DM} = \frac{\Delta V_X - \Delta V_Y}{\Delta V_{in,CM}} = \frac{g_m}{1 + 2g_m R_{SS}} \Delta R_D$$

MOS Differential Pair – Common Mode Response (contd.)

Thus a common-mode input introduces a differential component, when the load is mis-matched, at the output

circuit exhibits common-mode to differential conversion


if the input of a differential pair includes both a differential signal and common-mode noise, the output is corrupted version of the input

Common-Mode Response (contd.)

Case-III: Effect of mismatches between M_1 and M_2 (dimension and V_T mismatches)

The asymmetry due to mismatch in the transistors generates slightly different currents in the two paths → leads to unequal transconductance

$$I_{D1} = g_{m1}(V_{in,CM} - V_P)$$
 $I_{D2} = g_{m2}(V_{in,CM} - V_P)$

No more AC grounded

$$V_P = (I_{D1} + I_{D2})R_{SS}$$

$$\therefore V_{X} - V_{Y} = -\frac{g_{m1} - g_{m2}}{(g_{m1} + g_{m2})R_{SS} + 1} R_{D} V_{in,CM}$$

 The mismatch in the transistors convert the input CM variations to a differential error by a factor:

$$A_{CM-DM} = \frac{V_X - V_Y}{V_{in,CM}} = -\frac{\Delta g_m R_D}{(g_{m1} + g_{m2})R_{SS} + 1}$$

Common-Mode Response (contd.)

 Ideally, the unwanted A_{CM-DM} is normalized to the wanted A_{DM} → the normalization factor is called CMRR

$$CMRR = \left| \frac{A_{DM}}{A_{CM-DM}} \right|$$

 For a differential pair with mis-matched transistor but operating at equilibrium, the differential gain is given by:

$$|A_{DM}| = \frac{R_D}{2} \frac{g_{m1} + g_{m2} + 4g_{m1}g_{m2}R_{SS}}{1 + (g_{m1} + g_{m2})R_{SS}}$$

$$\Rightarrow CMRR = \left| \frac{A_{DM}}{A_{CM-DM}} \right| = \frac{g_{m1} + g_{m2} + 4g_{m1}g_{m2}R_{SS}}{2\Delta g_{m}} = \frac{g_{m}}{\Delta g_{m}} (1 + 2g_{m}R_{SS})$$

Where, $g_m = (g_{m1} + g_{m2})/2$

Non-ideal Characteristics of Differential Amplifier

DC Offset Problems

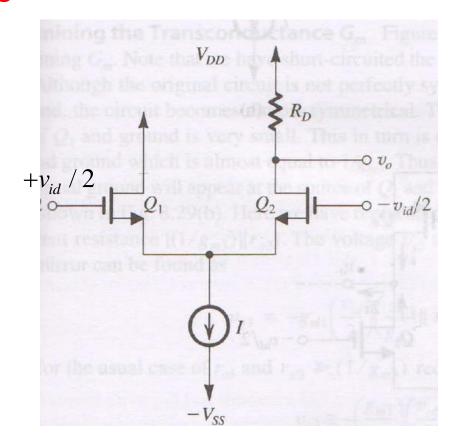
Due to mismatch in load resistances, mismatch in W/L, and mismatch in V_T

 $V_{\text{out1}} \longrightarrow X$ $V_{\text{out2}} \longrightarrow V_{\text{out2}}$ $V_{\text{in1}} \longrightarrow M_1$ $M_2 \longrightarrow V_{\text{in2}}$

Mismatch in R_D

$$R_{D1} = R_D + \frac{\Delta R_D}{2} \qquad \qquad R_{D2} = R_D - \frac{\Delta R_D}{2}$$

$$V_{ou1} = V_{DD} - \frac{I_{SS}}{2} \left(R_D + \frac{\Delta R_D}{2} \right)$$

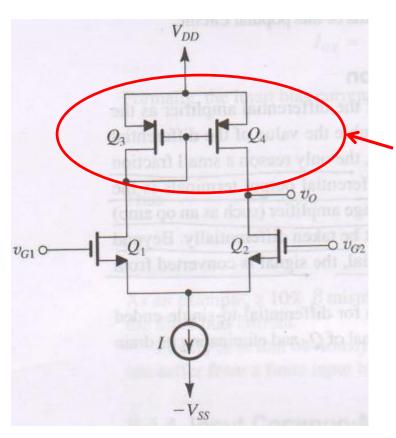

$$V_{out2} = V_{DD} - \frac{I_{SS}}{2} \left(R_D - \frac{\Delta R_D}{2} \right)$$

Therefore differential output:
$$V_o = V_{out2} - V_{out1} = \left(\frac{I_{SS}}{2}\right) \Delta R_D$$

Non-zero ← Unwanted ← polarity unknown a priori

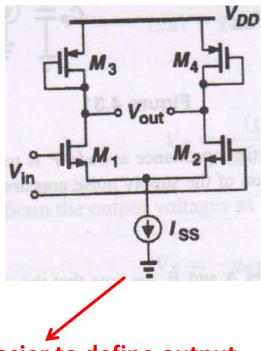
Differential Amplifier with Active Load

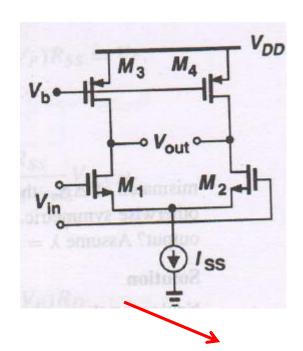
- Offset signal appears due to mismatch → differential can overcome this offset problem
- However most systems are single-ended → require single ended signal → what is the solution?


No. Why?

What is the solution?

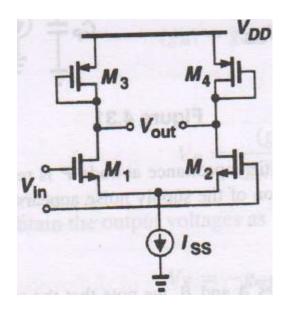
Differential Amplifier with Active Load

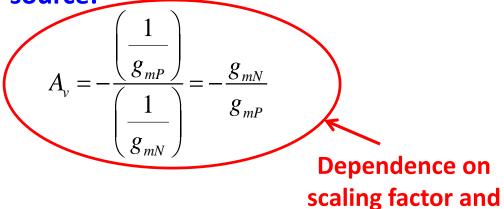

Differential pair with current mirror


Although this solves the problem but any mismatch in Q₃ and Q₄ will cause variations in the eventual output

Differential Pair with Active Loads

It can help in mitigating the common-mode to differential conversion arising out from R_D mismatch

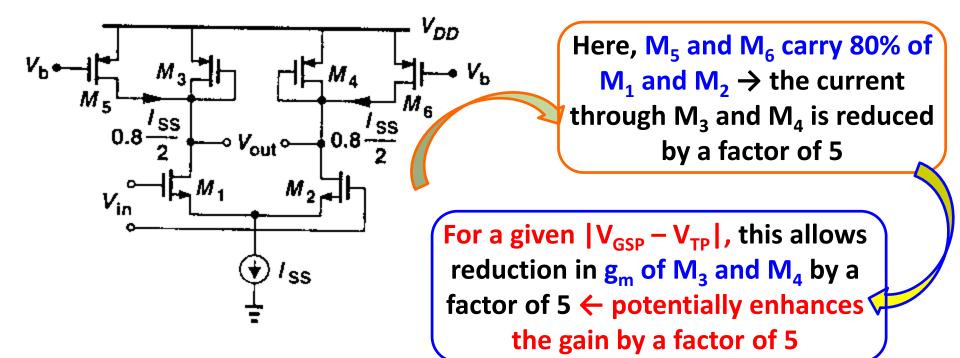

Its easier to define output CM level as M₃/M₄ are in saturation by default


M₃/M₄ are not in saturation by default & therefore output CM level not well defined

process parameters

Differential Pair with Active Loads (contd.)

Differential pair with ideal current source:


- Precision comes but with a price. What is that?
 - Reduced voltage swings

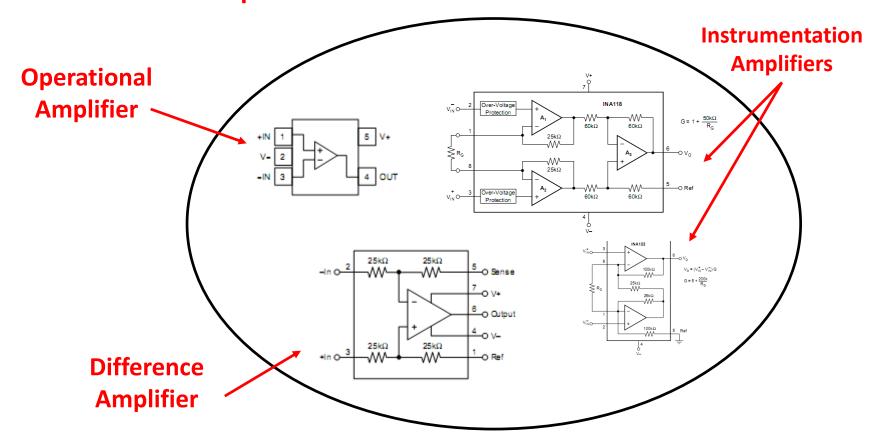
 \rightarrow to increase gain \rightarrow reduce $(W/L)_P \rightarrow$ as a consequence V_{ov} of M_3/M_4 reduces \rightarrow eventually lowers the CM level at the nodes X and Y \rightarrow clipping in the negative cycle

Differential Pair with Active Loads (contd.)

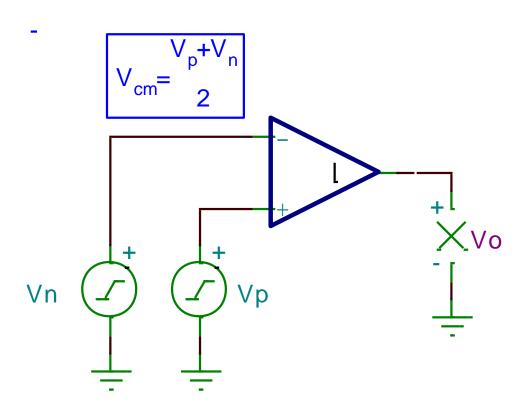
Diode-connected Load:

- The output swing can be improved <u>IF</u> part of bias current to M₁ and M₂ can be provided by PMOS current sources
 - The trick here is to reduce the g_m of M₃ and M₄ by lowering their drain currents instead of their aspect ratios

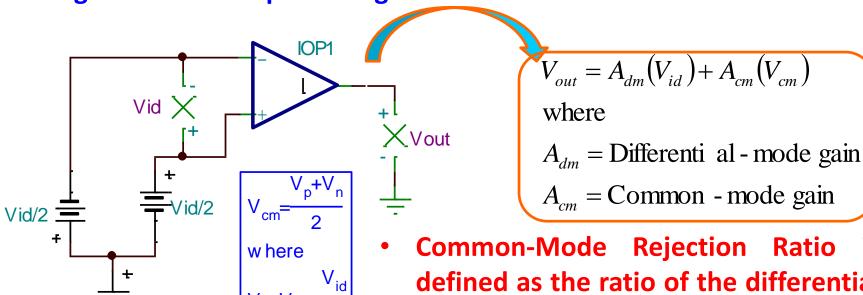
Differential Pair with Active Loads (contd.)


Constant Current Sources:

- The small signal gain of differential pair with current source load is usually in the range of 10 – 20.
- How to increase the gain?
- Use <u>Cascode</u> structure <u>both</u> for NFET and PFET

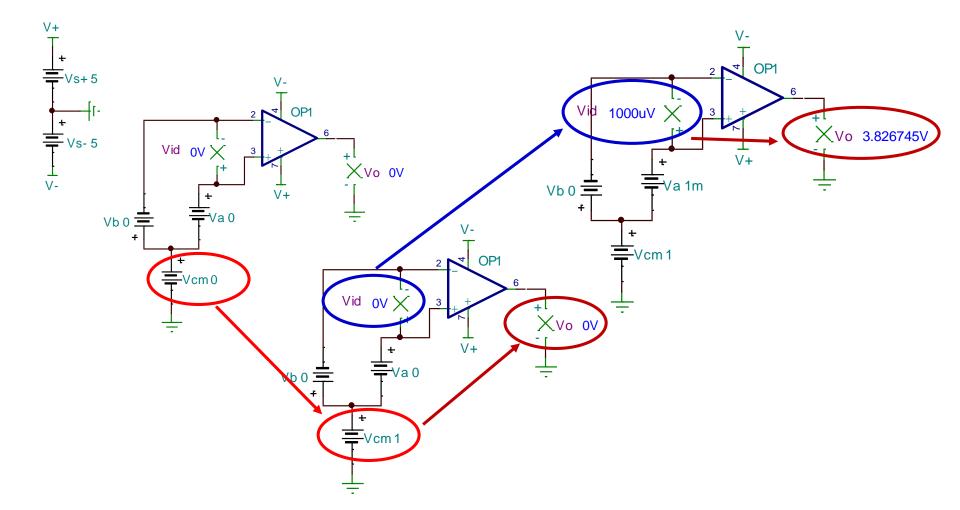

Cascode will definitely enhance the small signal gain <u>BUT</u> at the cost of reduced voltage headroom

Common Mode Rejection Ratio (CMRR)

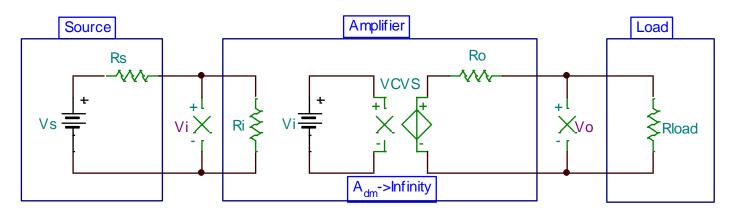

- Differential input amplifiers are devices/circuits that can input and amplify differential signals and suppress common-mode signals
 - <u>This includes</u> operational amplifiers, instrumentation amplifiers, and difference amplifiers

 For a differential input amplifier, common-mode voltage is defined as the average of the two input voltages

For a differential amplifier, common-mode voltage is defined as the average of the two input voltages


defined as the ratio of the differential gain to the common-mode gain

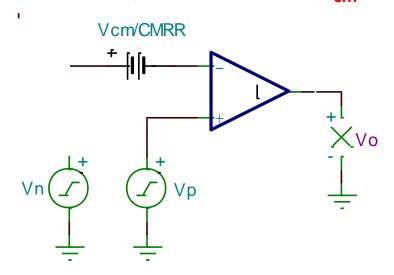
$$CMRR = \left| \frac{A_{dm}}{A_{cm}} \right|$$


CMR is defined as:

$$CMR(dB) = 20\log_{10}(CMRR)$$

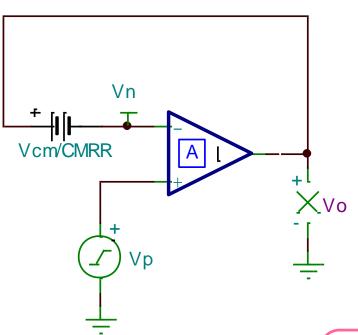
 Ideally a differential input amplifier only responds to a differential input voltage, not a common-mode voltage.

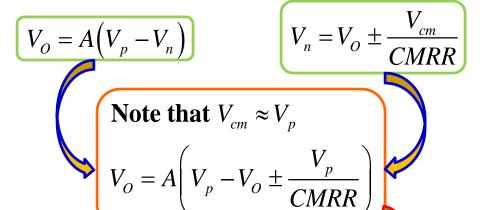
- What is the CMRR of an ideal differential input amplifier (e.g. op-amp)?
- Recall that the ideal common-mode gain of a differential input amplifier is ZERO
- Voltage Amplifier Model


- Also recall that the differential gain of an ideal op-amp is some high value
- Therefore: $CMRR_{ideal-OA} = \frac{A_{dm}}{A_{cm}} = \frac{A_{dm} \to \infty}{A_{cm} \to 0} \to \infty$

Real Op-Amp CMRR

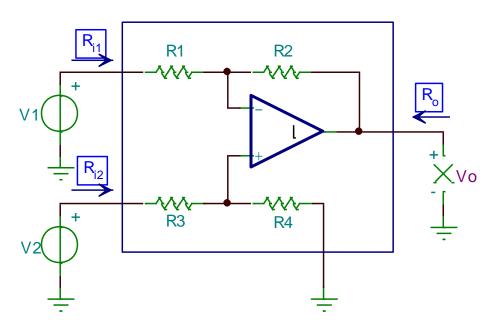
- There will be a common-mode gain due to the following
 - Asymmetry in the circuit
 - Mismatched source and drain resistors
 - Signal source resistances
 - Gate-drain capacitances
 - transconductances
 - Gate leakage currents
 - Finite output impedance of the tail current source
 - Changes with frequency due to tail current source's shunt capacitance
- These issues will manifest themselves through converting commonmode variations to differential components at the output and variation of the output common-mode level


Modeling CMRR


- Now that we understand what CMRR is and what affects it in operational amplifiers, let's see how it can affect a circuit.
- First, however, we need to understand the model
- To be useful, CMRR needs to be referred-to-input (RTI)
- We can then represent it as a voltage source (aka offset voltage) in series with an input. The magnitude (RTI) is V_{cm}/CMRR.

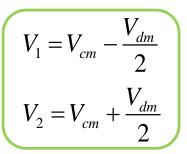
OA CMRR Error

Example: non-inverting buffer


$$\frac{V_O}{V_D} = \frac{A\left(1 \pm \frac{1}{CMRR}\right)}{1 + A}$$

$$\frac{\mathbf{As} \, A \to \infty}{V_o \atop V_p} \to 1 \pm \frac{1}{CMRR}$$

Clearly this factor should be as small as possible

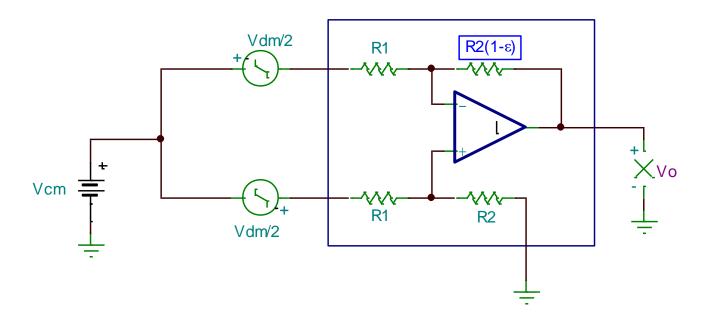

CMRR of Difference Amplifiers

- A difference amplifier is made up of a differential amplifier (operational amplifier) and a resistor network as shown below
- The circuit meets our definition of a differential amplifier
- The output is proportional to the difference between the input signals

CMRR of Difference Amplifiers

Let's replace V₁ and V₂ with our alternate definition of the inputs (in terms of differential-mode and common-mode signals)

$$V_{o} = \frac{R_{2}}{R_{1}} (V_{2} - V_{1})$$


$$V_{o} = \frac{R_{2}}{R_{1}} \left(\left(V_{cm} + \frac{V_{dm}}{2} \right) - \left(V_{cm} - \frac{V_{dm}}{2} \right) \right)$$

$$V_{o} = \frac{R_{2}}{R_{1}} (V_{dm})$$

 It is readily apparent that an ideal difference amplifier's output should only amplify the differential-mode signal...not the common-mode signal.

CMRR of Difference Amplifiers

- The last expression is based on the premise that the operational amplifier is ideal and that the resistors are balanced
- Keeping the assumption that the operational amplifier is ideal, let's see what happens when an imbalance factor (ε) is introduced

CMRR of Difference Amplifiers

Using superposition we find that:

$$V_{o} = \left(V_{cm} - \frac{V_{dm}}{2}\right) \left(-\frac{R_{2}(1-\varepsilon)}{R_{1}}\right) + \left(V_{cm} + \frac{V_{dm}}{2}\right) \left(\frac{R_{2}}{R_{1} + R_{2}}\right) \left(1 + \frac{R_{2}(1-\varepsilon)}{R_{1} + R_{2}(1-\varepsilon)}\right)$$

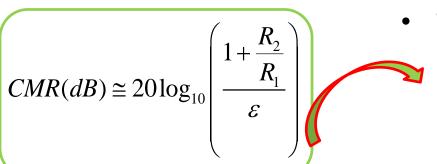
After simplification we find that:

$$V_{o} = A_{dm}V_{dm} + A_{cm}V_{cm}$$
where
$$A_{dm} = \frac{R_{2}}{R_{1}} \left(1 - \frac{R_{1} + 2R_{2}}{R_{1} + R_{2}} \times \frac{\varepsilon}{2} \right)$$

$$A_{cm} = \frac{R_{2}}{R_{1} + R_{2}} \times \varepsilon$$

As expected, an imbalance affects the differential and common-mode gains, which will affect CMRR!

As the error $(\varepsilon) \rightarrow 0$, $A_{dm} \rightarrow R_2/R_1$ and $A_{cm} \rightarrow 0$

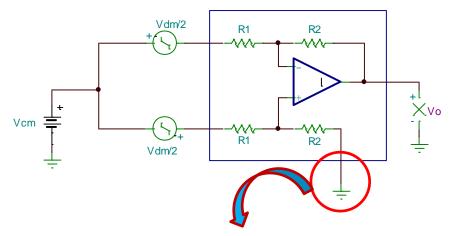

CMRR of Difference Amplifiers

Since we have equations for
$$A_{cm}$$
 and $A_{dm'}$ let's look at CMR:
$$CMR(dB) = 20\log_{10}\left(\frac{A_{dm}}{A_{cm}}\right) = 20\log_{10}\left(\frac{\frac{R_2}{R_1}\left(1 - \frac{R_1 + 2R_2}{R_1 + R_2} \times \frac{\mathcal{E}}{2}\right)}{\frac{R_2}{R_1 + R_2} \times \mathcal{E}}\right)$$

- If the imbalance is sufficiently small we can neglect its effect on A_{dm}
- With that and some algebra we find:

$$CMR(dB) \cong 20\log_{10}\left(\frac{1 + \frac{R_2}{R_1}}{\varepsilon}\right)$$

CMRR of Difference Amplifiers


This equation shows two very important relationships

- As the gain of a difference amplifier increases (R_2/R_1) , CMR increases
- As the mismatch (ε) increases, CMR decreases

Please remember that this just shows the effects of the resistor network and assumes an ideal amplifier

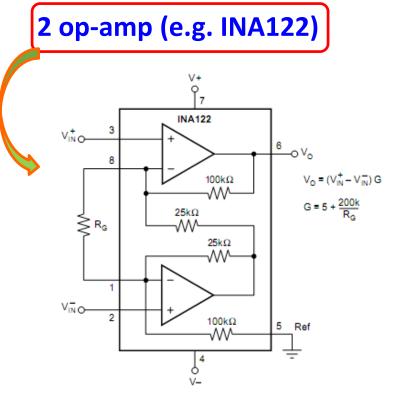
CMRR of Difference Amplifiers

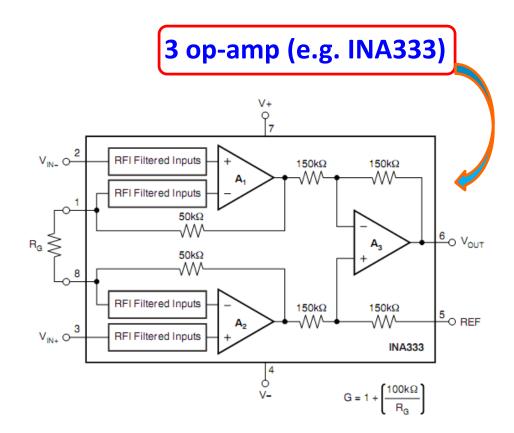
- Another possible source for CMRR degradation is the impedance at the reference pin.
- So far we have connected this pin to low-impedance ground.

- Placing an impedance here will disturb the voltage divider we come across during superposition analysis.
- This will negatively affect CMR

CMRR of Difference Amplifiers

Pros:

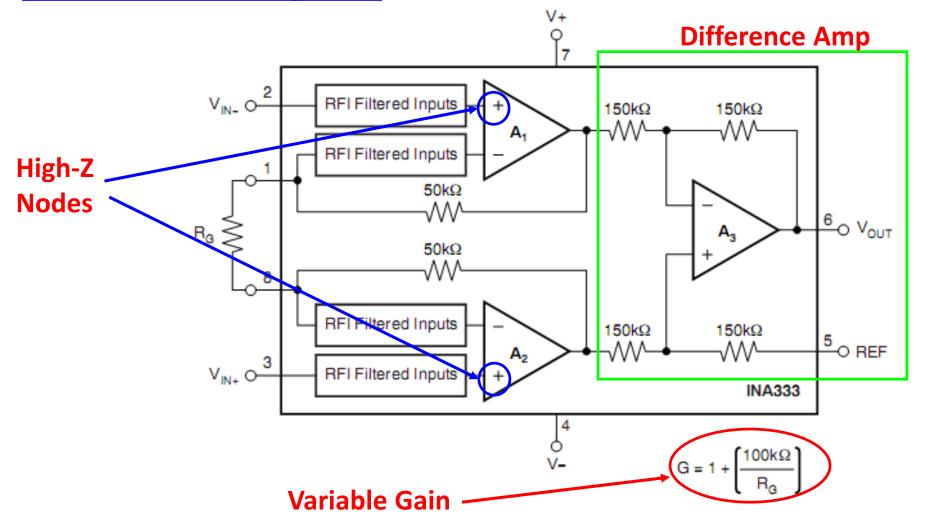

- Difference amplifiers amplify differential signals and reject common-mode signals
- The common-mode rejection is based mainly on resistor matching
- Difference amplifiers can be used to protect against ground disturbances


Cons:

- Externally changing the gain of a difference amplifier is not worthwhile
- The input impedance is finite
 - This means that a difference amplifier will load the input signals
 - If the input signal source's impedances are not balanced, CMR could be degraded
- Is there a way we can amplify differential signals, change the gain, retain high CMR, and not load our source?
- Yes! Buffer the inputs...this creates an Instrumentation Amplifier (IA).

Instrumentation Amplifiers


There are 2 common types of instrumentation amplifiers



Instrumentation Amplifiers

- Notice both have gain equations so you can vary the gain
- Notice the input impedance is that of the non-inverting terminal of a non-inverting amplifier

Instrumentation Amplifiers

Instrumentation Amplifiers

- So, what is the CMRR of an instrumentation amplifier?
- Instrumentation amplifiers reject common-mode signals $(A_{cm} \rightarrow 0)$

• Recall:
$$CMRR = \frac{A_{dm}}{A_{cm}}$$

CMRR is directly related to differential gain. Since we can change the differential gain of an IA, we also change the CMRR.