

Lecture-12

Date: 01.10.2015

• Differential Amplifier

Differential Amplifier

- Why differential?
- What do we want from an amplifier?
 - robust operation → free from external effects such as noise
 - High output voltage swing → optimal headroom / legroom
 - High gain → such as cascode configuration
 - Linear Performance
- Differential amplifiers exhibit/provide following features:
 - robust operation → noise do not affect its performance
 - Higher output voltage swing
 - Higher gain in comparison to single-stage amplifiers
 - Linear Performance and simpler biasing

Major Drawback: more area on a chip (however not always true!)

Differential Amplifier (contd.)

Differential amplifier deals with differential signals

Single-ended signals

Defined with respect to a fixed potential (usually ground)

Differential signals

Defined between two nodes that have equal and opposite signal excursions around a fixed potential

The fixed potential in differential signal is called "common-mode" CM level

Differential Amplifier (contd.)

MOS Differential Pair

Operation with a Common-Mode Input Voltage

• Voltage at each drain is:
$$v_{D1} = v_{D2} = V_{DD} - \frac{I}{2}R_D$$

$$v_{G1} = v_{G2} = v_{CM}$$

Since Q1 and Q2 are matched, the symmetry gives:

$$i_{D1} = i_{D2} = \frac{1}{2}$$

Source Voltage is:

$$v_s = v_{CM} - V_{GS}$$

Where, V_{GS} is obtained from: $\frac{I}{2} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right) (V_{GS} - V_T)^2$

Operation with a Common-Mode Input Voltage (contd.)

- Drain Voltage Difference: $v_o = v_{D1} v_{D2} = 0$
- Voltage difference is zero → what does it suggest?
 - The differential pair doesn't respond to CM input signals
- Let us look further: suppose v_{CM} is varied in such a way that Q_1 and Q_2 remain in saturation \rightarrow "I" will divide equally between Q_1 and $Q_2 \rightarrow$ the drain voltages (v_{D1} and v_{D2}) will not change \rightarrow difference in drain voltages will remain zero
 - This clearly supports the hypothesis that the differential pair doesn't respond to CM input signals → alternatively, differential pair rejects variations in CM input signals → provides protection against any abrupt changes in CM level originating from any factors such as noise etc.
- How about the common-mode input range? → The range of v_{CM} over which Q₁ and Q₂ operate properly

Operation with a Common-Mode Input Voltage (contd.)

• For Q₁ and Q₂ to remain in saturation:

$$V_{GS} - V_T \leq V_{DS} \qquad \Rightarrow (v_{CM} - v_S) - V_T \leq V_{DD} - \frac{I}{2}R_D - v_S$$

$$\Rightarrow v_{CM} \leq V_T + V_{DD} - \frac{I}{2}R_D \qquad \therefore (v_{CM})_{\max} = V_T + V_{DD} - \frac{I}{2}R_D$$

 The lowest value of v_{CM} is determined by the need to keep the constant current source operational:

$$\begin{aligned} v_{CM} - V_{GS} - (-V_{SS}) &\ge V_{CS} \qquad \Rightarrow v_{CM} - V_{GS} + V_T - V_T &\ge -V_{SS} + V_{CS} \\ \Rightarrow v_{CM} - V_{OV} - V_T &\ge -V_{SS} + V_{CS} \qquad \Rightarrow v_{CM} &\ge -V_{SS} + V_{CS} + V_{OV} + V_T \\ &\therefore (v_{CM})_{\min} = -V_{SS} + V_{CS} + V_{OV} + V_T \end{aligned}$$

Operation with a Differential Input Voltage

 Simple differential input: v_{id} to the gate of Q_1 and grounding of gate of Q_2 :

$$v_{GS1} = v_{id} - v_s$$

$$v_{GS2} = -v_s$$

$$v_{id} = v_{GS1} - v_{GS2}$$

For +ve $v_{id} \rightarrow v_{GS1}$ is greater \rightarrow i_{D1} will be greater than i_{D2}

Differential output voltage: $v_{D2} - v_{D1} > 0$

ECE315/515

Operation with a Differential Input Voltage (contd.)

• For -ve $v_{id} \rightarrow v_{GS2}$ is greater $\rightarrow i_{D2}$ will be greater than i_{D1}

$$v_{D2}(=V_{DD} - i_{D2}R_D) < v_{D1}(=V_{DD} - i_{D1}R_D)$$

Differential output voltage: $v_{D2} - v_{D1} < 0$

It is thus apparent that the differential pair respond to differential-mode signals \rightarrow by providing differential output signal between the two drains

Operation with a Differential Input Voltage (contd.)

- <u>Differential pair as an amplifier</u>
- Consider the scenario: (for small v_{id})
 - For +ve v_{id} , a small increase of v_{id} will bring an increase of ΔI in the current "I" through Q_1 and a decrease by same amount in current "I" through Q_2 .

Therefore:

- $-\Delta IR_D$: develops at the drain of Q₁
 - ΔIR_D : develops at the drain of Q₂

Thus, additional differential output: $\Delta v_o = 2\Delta IR_D \propto v_{id}$: develops

Amplifier Action

Differential Pair – Large-Signal Operation

$$i_{D1} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (v_{GS1} - v_T)^2$$

The idea is to define i_{D1} and i_{D2} in terms of input differential signal $v_{id} = v_{G1} - v_{G2}$

The circuit doesn't include connection details considering that these drain current equations do not depend on the external circuitries

Assumptions: Q₁ and Q₂ are always in saturation; differential pair is perfectly matched; channel length modulation is not present

$$i_{D2} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (v_{GS2} - v_T)^2$$

ECE315/515

Differential Pair – Large-Signal Operation (contd.)

ECE315/515

Differential Pair – Large-Signal Operation (contd.)

Now:
$$\sqrt{i_{D1}} - \sqrt{i_{D2}} = \sqrt{\frac{1}{2}\mu_n C_{ox} \frac{W}{L}} \cdot v_{id}}$$
 and: $i_{D1} + i_{D2} = I$
 $i_{D1} = \frac{1}{2} \pm \sqrt{\mu_n C_{ox} \frac{W}{L}} I \left(\frac{v_{id}}{2}\right) \sqrt{1 - \frac{(v_{id}/2)^2}{I/(\mu_n C_{ox} \frac{W}{L})}}$
 i_{D1} has same polarity as $v_{id} \rightarrow$ here +ve
 $\therefore i_{D1} = \frac{I}{2} + \sqrt{\mu_n C_{ox} \frac{W}{L}} I \left(\frac{v_{id}}{2}\right) \sqrt{1 - \frac{(v_{id}/2)^2}{I/(\mu_n C_{ox} \frac{W}{L})}}$
 $\Rightarrow i_{D2} = I - i_{D1} = \frac{I}{2} - \sqrt{\mu_n C_{ox} \frac{W}{L}} I \left(\frac{v_{id}}{2}\right) \sqrt{1 - \frac{(v_{id}/2)^2}{I/(\mu_n C_{ox} \frac{W}{L})}}$

ECE315/515

Differential Pair – Large-Signal Operation (contd.)

 $v_{id} = \sqrt{2}V_{OV}$: the current I is steered through Q₁ $v_{id} = -\sqrt{2}V_{OV}$: the current I is steered through Q₂

Differential Pair – Large-Signal Operation (contd.)

Observations:

- The currents are nonlinear due to presence of square term
- Our interest: linear amplification ↔ how to achieve that?
- By keeping $(v_{id}/2)$ much smaller than V_{ov}

$$\begin{split} i_{D1} &= \frac{I}{2} + \left(\frac{I}{V_{OV}}\right) \left(\frac{v_{id}}{2}\right) \sqrt{1 - \frac{(v_{id}/2)^2}{V_{OV}}} \cong \frac{I}{2} + \left(\frac{I}{V_{OV}}\right) \left(\frac{v_{id}}{2}\right) = \frac{I}{2} + i_d \\ i_{D2} &= \frac{I}{2} - \left(\frac{I}{V_{OV}}\right) \left(\frac{v_{id}}{2}\right) \sqrt{1 - \frac{(v_{id}/2)^2}{V_{OV}}} \cong \frac{I}{2} - \left(\frac{I}{V_{OV}}\right) \left(\frac{v_{id}}{2}\right) = \frac{I}{2} - i_d \\ \\ \text{Where:} \qquad i_d = \left(\frac{I}{V_{OV}}\right) \left(\frac{v_{id}}{2}\right) \end{split}$$

Differential Pair – Large-Signal Operation (contd.)

Observations:

- However, reduction in v_{id} leads to reduction in $g_m \rightarrow$ consequently reduction in gain
- How can we increase g_m?
 - By using smaller (W/L) ← for a constant bias current
- Linearity can also be improved by increasing $V_{OV} \rightarrow$ however this results into reduced $g_m \leftrightarrow g_m$ can be increased by increasing bias current but at the expense of higher power consumption

Differential Pair – Small-Signal Operation

Input Voltages

$$v_{G1} = v_{CM} + \frac{1}{2}v_{id}$$
 $v_{G2} = v_{CM} - \frac{1}{2}v_{id}$

 v_{CM} is common-mode dc voltage \rightarrow is needed to set the dc voltages (biasing point) of the NFETs

In general, v_{CM} is at the middle of the power supply \rightarrow therefore, for dual-rail supply it is typically zero

The differential signal v_{id} is applied in a balanced manner $\rightarrow v_{G1}$ increases by $v_{id}/2$ and v_{G2} decreases by $v_{id}/2$

Q: Do you expect any difference in performance while applying the differential signal v_{id} in a balanced manner or in an unbalanced manner?

Differential Pair – Small-Signal Operation (contd.)

What is the small signal voltage gain?

From large-signal analysis:

$$g_{m} = \frac{2I_{D}}{V_{OV}} = \frac{2(I/2)}{V_{OV}} = \frac{I}{V_{OV}}$$

For CS mode Q₁:

$$v_{o1} = -g_m \frac{v_{id}}{2} R_D$$

For CS mode Q₂:

$$v_{o2} = g_m \frac{v_{id}}{2} R_D$$

• Discards the need of a bypass capacitor for ac grounding

Differential Pair – Small-Signal Operation (contd.)

For single-ended operation:

$$A_{v} = \frac{v_{o1}}{v_{id}} = -\frac{1}{2} g_{m} R_{D} \qquad \underline{OR} \qquad A_{v} = \frac{v_{o2}}{v_{id}} = \frac{1}{2} g_{m} R_{D}$$

For differential operation:

$$A_{d} = \frac{v_{o2} - v_{o1}}{v_{id}} \underbrace{g_{m}R_{D}}_{\text{Twice the single-ended gain}}$$

Is it always advantageous?

Differential Pair – Small-Signal Operation (contd.)

Alternative Approach:

Drain current is given by:

$$i_{d1} = i_{d2} = \frac{v_{id}}{2 / g_m}$$

Therefore,

$$v_{o1} = -g_m \frac{v_{id}}{2} R_D \qquad v_{o2} = g_m \frac{v_{id}}{2} R_D$$
$$\therefore A_d = \frac{v_{o2} - v_{o1}}{v_{id}} = g_m R_D$$

