

Date: 17.09.2015

Lecture – 11

- Non-idealities in Current Mirror
- Cascode Current Mirror
- Current Mirror Configurations
- Examples

Cascode Amplifier with Current Source Load

We know the gain of Cascode stage is given by:

$$\Rightarrow A_{v} \approx -\frac{g_{m1}(g_{m2} + g_{mb2})r_{o1}r_{o2}}{\left[R_{D} + r_{o1} + r_{o2} + (g_{m2} + g_{mb2})r_{o1}r_{o2}\right]}R_{D}$$

A constant current source possesses very high output impedance ($R_D \rightarrow \infty$), therefore the gain equation changes to:

It is apparent that the maximum small-signal voltage gain is the multiplication of gains from CS and CG stages → definitely a big plus!

$$R_{out} \approx (g_{m2} + g_{mb2}) r_{o2} r_{o1}$$

Cascode – Amplifier (contd.)

Discussion with respect to alteration in dimension

What happens if <u>Length (L)</u> of the main device is quadrupled while the <u>Width</u> (W) remains same?

Cascode more suited for noise applications

Cascode – Amplifier (contd.)

Discussion with respect to alteration in dimension

$$(V_{GS} - V_{TH})^2 = \frac{2I_D}{\mu_n C_{ox} \left(\frac{W}{L}\right)}$$

Quadruppling of **Length (L)** while keeping the Width (W) results in doubling of overdrive voltage

For **identical devices**, cascode also exhibits doubling of overdrive voltage

Shielding Property of Cascode

Cascode amplifier and Cascode current source → could be used in applications where the output varies drastically due to any reason!

 \rightarrow This variation doesn't affect the subsequent sections greatly \rightarrow shielding property of Cascode

Example: Two identical NFETs are used to generate constant current sources. However, due to internal circuitry of the system, V_x is higher than V_{v} by ΔV .

Q: determine the resulting difference between I_{D1} and I_{D2} if $\lambda \neq 0$

$$I_{D1} = \frac{1}{2} \mu_n C_{ox} (V_b - V_T)^2 (1 + \lambda V_X)$$

$$I_{D2} = \frac{1}{2} \mu_n C_{ox} (V_b - V_T)^2 (1 + \lambda V_Y)$$

$$I_{D1} - I_{D2} = \frac{1}{2} \mu_n C_{ox} (V_b - V_T)^2 (\lambda \Delta V)$$

$$I_{D1} - I_{D2} = \frac{1}{2} \mu_n C_{ox} (V_b - V_T)^2 (\lambda \Delta V)$$

Shielding Property of Cascode (contd.)

Q: Add Cascode devices to M1 and M2 and then check the difference between I_{D1} and I_{D2} if $\lambda \neq 0$

This is a large value and thus the Cascode structure gives smaller variation → perfect example of Shielding property!!!

Triple Cascode

Cascoding can be extended to three or more devices to achieve higher output impedance

Folded Cascode

Self Study

Current Mirror

Now let us take the generic equations for the following current mirror:

$$I_{REF} = \frac{1}{2} \mu_{n1} C_{ox1} \left(\frac{W}{L} \right)_{1} (V_{GS1} - V_{T1})^{2}$$

$$I_{out} = \frac{1}{2} \mu_{n2} C_{ox2} \left(\frac{W}{L}\right)_2 (V_{GS2} - V_{T2})^2$$

Even if these transistors are identical and have been fabricated on the same chip [thus practically possessing similar parameters such as V_T , μ_n , C_{ox}], there are three effects that causes current mirror to be different from ideal situation

These effects are: (a) Channel Length Modulation, (b) V_T offset between the two transistors, (c) Imperfect Geometrical Matching

Current Mirror (contd.)

Channel Length Modulation Effect

 Assuming all other aspects of the transistor are ideal and the <u>ratio</u> of aspect ratios of both the transistors are unity then:

Current Mirror (contd.)

Channel Length Modulation Effect (contd.)

Significant Ratio Error can exist when mirror transistors do not have the same V_{DS}

For a given V_{DS}, the ratio improves with decreasing λ (i.e, increasing output resistance)

Therefore, a good current mirror should have identical V_{DS} and high output resistance

Current Ratio Error vs $(V_{DS2} - V_{DS1})$ for different values of λ

Current Mirror (contd.)

Channel Length Modulation Effect (contd.)

- Therefore, the apparent solution seems the use of long channel device
 - however this also requires increase in width → results in problems for area and power constraint designs
 - furthermore, increase in width also increases the output capacitance
 high frequency performance suffers
 - short channel devices are commonplace and therefore this solution is not appropriate

Cascode Current Mirror

 In order to overcome the error due to channel length modulation, instead of a simple two transistor "current mirror" it is recommended to use "cascode current mirror"

- In this architecture, small changes in potential at node-P does not have any effect on the potential at node-Y -> shielding property of Cascode
- Through some technique make $V_Y = V_X$ \rightarrow then the effect of channel length modulation is insignificant as the mirror equation becomes:

$$\Delta V_Y = \Delta V_P / [(g_{m3} + g_{mb3})r_{o3}]$$

Once again only dependent on the scaling of devices

$$I_{out} = I_{REF} \frac{(W/L)_2}{(W/L)_1}$$

Cascode Current Mirror (contd.)

- How do we generate the condition: V_Y = V_X
- For this to happen, we must guarantee $V_b V_{GS3} = V_X \rightarrow It$ means one gate-source voltage should be added to achieve this \rightarrow this is easily achieved by placing a diode-connected device M_0 in series with M_1

Addition of this device will ensure fulfillment of: $V_h - V_{GS3} = V_x$

Then proper choice of dimensions of M₀ and M₃ yields V_{GS0} = V_{GS3}

Cascode Current Mirror (contd.)

$$V_{GS0} + V_X + V_{GS1} = V_{GS3} + V_Y + V_{GS2}$$

$$\therefore V_{GS0} + V_X = V_{GS3} + V_Y$$

proper choice of dimensions of M₀ and M₃ yields V_{GS0} = V_{GS3}

Cascode Current Mirror (contd.)

- Thus appropriate choices of dimensions of M₀ and M₃ gives: V_{GS0} = V_{GS3}
- For this to happen:

$$\frac{(W/L)_3}{(W/L)_0} = \frac{(W/L)_2}{(W/L)_1}$$

- Once $V_{GSO} = V_{GS3}$, we get: $V_X = V_Y$
- $V_X = V_Y$ leads to the condition: $V_{DS1} = V_{DS2} \rightarrow$ transforms the mirror equation:

 $I_{out} = I_{REF} \frac{(W/L)_2}{(W/L)_1}$ exist body effect in transistors M_0 and M_3

 Cascode configuration improves the accuracy of current copying capability → but what is the major drawback?

Cascode Current Mirror (contd.)

- As the cascode current mirror provides a constant current source, it should also possess very high output impedance
- Consider once again the following configuration:

Cascode Current Mirror (contd.)

Accuracy and Voltage Swing Trade-off

Standard Cascode
Current Mirror

- V_b is chosen to allow minimum V_p
- Problem: V_X ≠ V_Y
- | out ≠ | ref

- V_b is chosen to allow V_X=V_Y
- V_p is not minimum
- However, I_{out} = I_{ref}

Current Mirror (contd.)

Threshold Offset Effect

- The offset between the threshold voltage of two transistors also causes problems in the optimal operation of current mirror
- The threshold offset is typically less than 10mV for identical transistors
 → even this small offset causes substantial error!!!
- Let us now consider a current mirror configuration where both have the same V_{DS} and all other aspects of the transistors are equal except V_T.
 The expression simplifies to:

$$\frac{I_{out}}{I_{REF}} = \left(\frac{V_{GS} - V_{T2}}{V_{GS} - V_{T1}}\right)^{2}$$

Current Mirror (contd.)

Threshold Offset Effect (contd.)

• The plot of ratio error between ideal and imperfect current mirroring as a function of $\Delta V_T = V_{T1} - V_{T2}$ results into:

Clearly identifies that better current mirroring is obtained for higher currents

Its due to the fact that V_{GS} is higher for higher currents \rightarrow ensures that ΔV_{T} is a smaller percentage of V_{GS}

Current Mirror (contd.)

Threshold Offset Effect (contd.)

- Sometimes it may happen that the factor $\mu_n C_{ox}$ (let us call it K') is also mismatched alongwith the offset in the threshold.
- The current mirror equation then transforms to:

$$\frac{I_{out}}{I_{REF}} = \frac{K_{2}^{'}(V_{GS} - V_{T2})^{2}}{K_{1}^{'}(V_{GS} - V_{T1})^{2}}$$

In this case its assumed that the aspect ratio is identical (considering that its designer driven!).

Let us define:

$$\Delta K' = K_2' - K_1' \qquad K' = \frac{1}{2} (K_2' + K_1') \qquad V_T = \frac{1}{2} (V_{T1} + V_{T2})$$

Then:

$$K_{1}^{'} = K^{'} - 0.5\Delta K^{'}$$
 $K_{2}^{'} = K^{'} + 0.5\Delta K^{'}$ $V_{T1} = V_{T} - 0.5\Delta V_{T}$ $V_{T2} = V_{T} + 0.5\Delta V_{T}$

Current Mirror (contd.)

Threshold Offset Effect (contd.)

Let us substitute the mirror equation using these assumed parameters:

$$\frac{I_{out}}{I_{REF}} = \frac{\left(K' + 0.5\Delta K'\right) (V_{GS} - V_T - 0.5\Delta V_T)^2}{\left(K' - 0.5\Delta K'\right) (V_{GS} - V_T + 0.5\Delta V_T)^2}$$

Factor out K' and (V_{GS} – V_T) to get:

$$\frac{I_{out}}{I_{REF}} = \frac{\left(1 + \frac{\Delta K}{2K}\right) \left(1 - \frac{\Delta V_T}{2(V_{GS} - V_T)}\right)^2}{\left(1 - \frac{\Delta K}{2K}\right) \left(1 + \frac{\Delta V_T}{2(V_{GS} - V_T)}\right)^2}$$

Assuming these quantities to be small, we get:

$$\left(\frac{I_{out}}{I_{REF}} = \left(1 + \frac{\Delta K'}{2K'}\right) \left(1 + \frac{\Delta K'}{2K'}\right) \left(1 - \frac{\Delta V_T}{2(V_{GS} - V_T)}\right)^2 \left(1 - \frac{\Delta V_T}{2(V_{GS} - V_T)}\right)^2\right)$$

Current Mirror (contd.)

Threshold Offset Effect (contd.)

• Retaining only the first order products gives:

$$\frac{I_{out}}{I_{REF}} \cong 1 + \frac{\Delta K'}{K'} - \frac{2\Delta V_T}{V_{GS} - V_T}$$

If the percentage change of K' and V_T are known apriori, then this expression can predict the worst-case error in the current mirroring capability of the current mirror

For example, if:
$$\frac{\Delta K'}{K'} = \pm 5\%$$

and:
$$\frac{\Delta V_T}{V_{GS} - V_T} = \pm 10\%$$

then:
$$\frac{I_{out}}{I_{REF}} \cong 1 \pm 0.05 \pm (-0.2) = 1 \pm (-0.15)$$

In this example, the maximum error amounts to 15% provided the tolerances in K' and V_T are correlated

Current Mirror (contd.)

Mismatch in Aspect Ratio

- mismatches are commonly present even in identical transistors on the same die ← W and L are often mismatched due to mask, photolithography, and diffusion variations → this can be significant even for two transistors placed side by side
- One way to overcome these effects is to make transistors much larger than these variations \rightarrow e.g., for transistors of identical size with W and L greater than $10\mu m$, the errors due to the mismatched aspect ratio will be insignificant \leftarrow when compared to errors contributed by offset V_T and Channel Length Modulation
- However, many applications (for high current gain applications!) require aspect ratio of transistor (M₂) to be much larger than the aspect ratio of the reference transistor (M₁) ← necessitates creativity in layout techniques!!!

Current Mirror (contd.)

Mismatch in Aspect Ratio (contd.)

Example: we see layout of one-to-four current amplifier below. Its assumed that the lengths are identical ($L_1 = L_2$). Find the ratio error if:

$$W_1 = 5 \pm 0.1 \mu m$$
 $W_2 = 20 \pm 0.1 \mu m$

$$\frac{I_{out}}{I_{REF}} = \frac{W_2}{W_1} = \frac{20 \pm 0.1}{5 \pm 0.1} = 4 \left(\frac{1 \pm (0.1/20)}{1 \pm (0.1/5)} \right) \approx 4 \left(1 \pm \frac{0.1}{20} \right) \left(1 - \frac{\pm 0.1}{5} \right)$$

$$\Rightarrow \frac{I_{out}}{I_{REF}} = 4\left(1 \pm \frac{0.1}{20} - \frac{\pm 0.4}{20}\right) \approx 4\left(1 - \left(\pm 0.06\right)\right)$$

 $\Rightarrow \frac{I_{out}}{I_{REF}} = 4 \left(1 \pm \frac{0.1}{20} - \frac{\pm 0.4}{20} \right) \approx 4 \left(1 - \left(\pm 0.06 \right) \right)$ It is assumed that variations would have the same sign. In this case it is apparent that the ratio error is 1.5% of the desired current ratio

Current Mirror (contd.)

Mismatch in Aspect Ratio (contd.)

- For large W, it's a good strategy to have W not much larger than L and to put equal transistors in parallel.
- A solution to this problem is to use appropriate layout technique. For example, use four duplicates of transistor M₁ to achieve one-to-four ratio.
 This way the tolerance on W₂ is multiplied by the nominal current gain.

Here its assumed that ΔW should be the same for all the transistors

Current Mirror Configurations

- It is a common practice to design current mirror circuits for high output impedance [for achieving near ideal current source!]
- No less important is the voltage headroom [specially for low voltage applications!!!]

Current Mirror Configurations (contd.)

Current Mirror Configurations (contd.)

Improved Wilson Current Mirror

Current Mirror Configurations (contd.)

Current Mirror Configurations (contd.)

Configurations Simple	Current Ratio $\frac{1 + \lambda V_{DS2}}{1 + \lambda V_{DS1}}$	Output Swing V_{DSsat}	Output Impedance $\frac{1}{g_m} r_o$
Cascode	1	$2V_{\scriptscriptstyle DSsat} + V_{\scriptscriptstyle T}$	$r_o^2.g_m$
Triple Cascode	1	$3V_{DSsat} + 2V_{T}$	$r_o^3.g_m^2$
Wilson	$\frac{1 + \lambda V_{DS2}}{1 + \lambda V_{DS1}}$	$2V_{DSsat} + V_{T}$	$r_o^2.g_m$
Improved Wilson	1	$2V_{DSsat} + V_T$	$r_o^2 \cdot g_m$

Example-1

Following figure illustrates a source-degenerated current source. Calculate the output resistance at the given bias current by using the following model parameter: $\mu_n C_{ox} = 110~\mu\text{A/V}^2,~\lambda = 0.04~(\text{L=1}~\mu\text{m})~\text{or}~0.01~(\text{L=2}\mu\text{m})~\text{/V},~2 | \varphi_F| = 0.7~,~\Upsilon = 0.4~\text{V}^{1/2}$

Example-1 (contd.)

The dc terminal conditions are:

$$I_D = 10 \mu A$$

$$V_S = I_D * R = 10 * 10^{-6} \times 100 * 10^3 = 1V$$

$$V_{SB} = V_{S}$$

Now the small signal model of the circuit is:

Simplification gives:

$$r_{out} = \frac{v_{out}}{i_{out}} = r + r_{out} + \left[\left(g_m + g_{mbs} \right) r_o \right] r$$

Can be approximated to:

$$r_{out} = g_m r_o r$$

Example-1 (contd.)

The device parameters can be computed as:

$$g_m = \sqrt{2\mu_n C_{ox} \frac{W}{L} I_D}$$
 $g_m = \sqrt{2 \times 110 \times 10^{-6} \times \frac{2}{2} \times 10 \times 10^{-6}}$ $g_m = 66.3 \times 10^{-6}$

$$g_{mbs} = g \frac{\gamma}{2(2|\phi_F| + V_{SB})^{1/2}} \implies g_{mbs} = 66.3 * 10^{-6} \frac{0.4}{2(0.7 + 1)^{1/2}} \implies \therefore g_{mbs} = 10.17 \times 10^{-6}$$

$$r_o = \frac{1}{\lambda I_D}$$
 $\therefore r_o = 2.5 \times 10^6 \Omega$

Thus:
$$r_{out} = 100*10^3 + 2.5*10^6 + \left[\left(66.6*10^{-6} + 10.17*10^{-6} \right) 2.5*10^6 \right] 100*10^3 = 21.7*10^6 \Omega$$

The approximated: $r_{out} = 66.6*10^{-6} \times 2.5*10^{6} \times 100*10^{3} = 16.65*10^{6} \Omega$

Example-2

Calculate the minimum output voltage required to keep device in saturation in example-1. The model parameters: $\mu_n C_{ox} = 110~\mu A/V^2$, $\lambda = 0.04~(L=1~\mu m)$ or 0.01 (L= $2\mu m$) /V, $2|\varphi_E|=0.7$, $\Upsilon=0.4~V^{1/2}$

$$V_D(\min) = V_S + (V_{GS} - V_T)(\min) = 1 + 0.302 = 1.302V$$

Example-3

Using the Cascode circuit shown below, design the W/L of M1 to achieve the same output resistance as the circuit in example-1. Ignore body effect.

Note that the terminal conditions of M2 must change to support the large gate voltage required for M1

Example-4

Now calculate the minimum output voltage required to keep the devices in saturation in example-3.

The minimum output voltage for circuit in example-1 is lower than the minimum output voltage for circuit in example-3, therefore is a better choice for low voltage applications

Example-5

Calculate the output resistance, while maintaining all the devices in saturation, for the circuit given below. Assume that I_{out} is actually 10µA.

Example-5 (contd.)

$$r_{out} = \frac{v_{out}}{i_{out}} = r_{o1} + r_{o2} + [g_{m2}r_{o2}]r_{o1}$$

$$r_{o1} = r_{o2} = \frac{1}{\lambda I_D} = 2.5 * 10^6 \Omega$$

$$g_{m2} = \sqrt{2(\mu_n C_{ox}) \left(\frac{W}{L}\right)_2 I_D} = 104.9 * 10^{-6}$$

$$\therefore r_{out} = 2.5 * 10^6 + 2.5 * 10^6 + \left[104.9 * 10^{-6} \times 2.5 * 10^6\right] 2.5 * 10^6 \approx 661 * 10^6 \Omega$$

Example-6

Consider the simple current mirror given below.

Over process, the absolute variations of physical parameters are as:

Width Variation +/- 5% Length Variation +/- 5% V_T variation +/- 5% $\mu_n C_{ox}$ Variation +/- 5%

Assuming that the drain voltages are identical, what is the minimum and maximum output current measured over the process variations given above. The model parameters: $\mu_n C_{ox} = 110 \ \mu\text{A/V}^2$, $\lambda = 0.04 \ (\text{L=1} \ \mu\text{m})$ or 0.01 (L= 2 μ m) /V, 2 | φ_F |=0.7 , Y=0.4 V^{1/2}

Example-6 (contd.)

We know:

$$I_{D} = \frac{1}{2} (U_{n}C_{ox}) \frac{W}{L} (V_{GS} - V_{T})^{2}$$

$$\Rightarrow V_{GS} = \sqrt{\frac{2I_D}{K\left(\frac{W}{L}\right)}} + V_T$$

• Assuming equal V_{GS} for both the transistors, we can express $i_o = \frac{1}{2} K_2 \left(\frac{W}{L} \right)_2 \sqrt{\frac{2 \times I_{\text{Re}\,f}}{K_1 \left(\frac{W}{L} \right)}} + V_{T1} - V_{T2}$ the output current as:

 We can deduce from this equation that the minimum and maximum of output current will happen under respective following conditions.

	K ₁	K ₂	(W/L) ₁	(W/L) ₂	V _{T1}	V _{T2}
i _o (min)	Max	Min	Max	Min	Min	Max
i _o (max)	Min	Max	Min	Max	Max	Min