ECE315 / ECE515

Lecture - 11

Date: 17.09.2015

- Non-idealities in Current Mirror
- Cascode Current Mirror
- Current Mirror Configurations
- Examples

ECE315 / ECE515

Cascode Amplifier with Current Source Load

We know the gain of Cascode stage is given by:

$$
\Rightarrow A_{v} \approx-\frac{g_{m 1}\left(g_{m 2}+g_{m b 2}\right) r_{o 1} r_{o 2}}{\left[R_{D}+r_{o 1}+r_{o 2}+\left(g_{m 2}+g_{m b 2}\right) r_{o 1} r_{o 2}\right]} R_{D}
$$

A constant current source possesses very high output impedance $\left(R_{D} \rightarrow \infty\right)$, therefore the gain equation changes to:

$$
A_{v} \approx-g_{m 1}\left(g_{m 2}+g_{m b 2}\right) r_{o 1} r_{o 2}=-\left(g_{m 1} r_{o 1}\right) \cdot\left(g_{m 2}+g_{m b 2}\right) r_{o 2}
$$

It is apparent that the maximum small-signal voltage gain is the multiplication of gains from CS and CG stages \rightarrow definitely a big plus!

$$
R_{o u t} \approx\left(g_{m 2}+g_{m b 2}\right) r_{o 2} r_{o 1}
$$

ECE315 / ECE515

Cascode - Amplifier (contd.)

Discussion with respect to alteration in dimension
What happens if Length (\mathbf{L}) of the main device is quadrupled while the Width (W) remains same?

Cascode more suited for noise applications

ECE315 / ECE515

Cascode - Amplifier (contd.)

Discussion with respect to alteration in dimension

$$
\left(V_{G S}-V_{T H}\right)^{2}=\frac{2 I_{D}}{\mu_{n} C_{o x}\left(\frac{W}{L}\right)}
$$

Quadruppling of Length (L) while keeping the Width (W) results in doubling of overdrive voltage

For identical devices, cascode also exhibits doubling of overdrive voltage

ECE315 / ECE515

Shielding Property of Cascode

Cascode amplifier and Cascode current source \rightarrow could be used in applications where the output varies drastically due to any reason!
\rightarrow This variation doesn't affect the subsequent sections greatly \rightarrow shielding property of Cascode

Example: Two identical NFETs are used to generate constant current sources. However, due to internal circuitry of the system, V_{X} is higher than V_{Y} by $\Delta \mathrm{V}$.

Q: determine the resulting difference between $\mathrm{I}_{\mathrm{D} 1}$ and $\mathrm{I}_{\mathrm{D} 2}$ if $\lambda \neq 0$
$I_{D 1}=\frac{1}{2} \mu_{n} C_{o x}\left(V_{b}-V_{T}\right)^{2}\left(1+\lambda V_{X} V_{D S 1}\right.$
$I_{D 2}=\frac{1}{2} \mu_{n} C_{o x}\left(V_{b}-V_{T}\right)^{2}\left(1+\lambda V_{Y}\right) \quad V_{D S 2}$

$$
I_{D 1}-I_{D 2}=\frac{1}{2} \mu_{n} C_{o x}\left(V_{b}-V_{T}\right)^{2}(\lambda \Delta V)
$$

ECE315 / ECE515

Shielding Property of Cascode (contd.)

Q: Add Cascode devices to M1 and M2 and then check the difference between $\mathrm{I}_{\mathrm{D} 1}$ and $\mathrm{I}_{\mathrm{D} 2}$ if $\boldsymbol{\lambda} \neq 0$

$$
\therefore I_{D 1}-I_{D 2}=\frac{1}{2} \mu_{n} C_{o x}\left(V_{b}-V_{T}\right)^{2}\left(\frac{\lambda \Delta V}{\left(g_{m 3}+g_{m 3}\right) r_{03}}\right)
$$

This is a large value and thus the Cascode structure gives smaller variation \rightarrow perfect example of Shielding property!!!

ECE315 / ECE515

Triple Cascode

- Cascoding can be extended to three or more devices to achieve higher output impedance

ECE315 / ECE515
Folded Cascode

Self Study

ECE315 / ECE515

Current Mirror

- Now let us take the generic equations for the following current mirror:

$$
I_{R E F}=\frac{1}{2} \mu_{n 1} C_{o x 1}\left(\frac{W}{L}\right)_{1}\left(V_{G S 1}-V_{T 1}\right)^{2}
$$

$$
I_{o u t}=\frac{1}{2} \mu_{n 22} C_{o x 2}\left(\frac{W}{L}\right)_{2}\left(V_{G S 2}-V_{T 2}\right)^{\prime}
$$

Even if these transistors are identical and have been fabricated on the same chip [thus practically possessing similar parameters such as $\mathrm{V}_{\mathrm{T}}, \mu_{\mathrm{n}}, \mathrm{C}_{\mathrm{ox}}$, there are three effects that causes current mirror to be different from ideal situation

These effects are: (a) Channel Length Modulation, (b) V_{T} offset between the two transistors, (c) Imperfect Geometrical Matching

ECE315 / ECE515

Current Mirror (contd.)

Channel Length Modulation Effect

- Assuming all other aspects of the transistor are ideal and the ratio of aspect ratios of both the transistors are unity then:

$$
\frac{I_{\text {out }}}{I_{\text {REF }}}=\frac{1+\lambda V_{D S 2}}{1+\lambda V_{D S 1}}
$$

$$
\begin{aligned}
& \text { It is assumed that } \\
& \lambda \text { is the same for } \\
& \text { both } M_{1} \text { and } M_{2}
\end{aligned}
$$

It is apparent that the difference in V_{DS} causes deviation from the ideal unity current gain or current mirroring

ECE315 / ECE515

Current Mirror (contd.)

Channel Length Modulation Effect (contd.)

Current Ratio Error vs $\left(\mathrm{V}_{\mathrm{DS} 2}-\mathrm{V}_{\mathrm{DS} 1}\right)$ for different values of $\boldsymbol{\lambda}$

ECE315 / ECE515

Current Mirror (contd.)

Channel Length Modulation Effect (contd.)

- Therefore, the apparent solution seems the use of long channel device
- however this also requires increase in width \rightarrow results in problems for area and power constraint designs
- furthermore, increase in width also increases the output capacitance \rightarrow high frequency performance suffers
- short channel devices are commonplace and therefore this solution is not appropriate

ECE315 / ECE515

Cascode Current Mirror

- In order to overcome the error due to channel length modulation, instead of a simple two transistor "current mirror" it is recommended to use "cascode current mirror"

ECE315 / ECE515

Cascode Current Mirror (contd.)

- How do we generate the condition: $\mathrm{V}_{\mathrm{Y}}=\mathrm{V}_{\mathrm{X}}$
- For this to happen, we must guarantee $\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{GS3}}=\mathrm{V}_{\mathrm{x}} \rightarrow$ It means one gate-source voltage should be added to achieve this \rightarrow this is easily achieved by placing a diode-connected device \mathbf{M}_{0} in series with \mathbf{M}_{1}

ECE315 / ECE515

Cascode Current Mirror (contd.)

ECE315 / ECE515

Cascode Current Mirror (contd.)

- Thus appropriate choices of dimensions of M_{0} and M_{3} gives: $V_{G S O}=V_{G S 3}$
- For this to happen:

$$
\frac{(W / L)_{3}}{(W / L)_{0}}=\frac{(W / L)_{2}}{(W / L)_{1}}
$$

- Once $\mathbf{V}_{G S 0}=\mathbf{V}_{G S 3}$, we get: $V_{X}=V_{Y}$
- $\mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{Y}}$ leads to the condition: $\mathrm{V}_{\mathrm{DS} 1}=\mathrm{V}_{\mathrm{DS} 2} \rightarrow$ transforms the mirror equation:

- Cascode configuration improves the accuracy of current copying capability \rightarrow but what is the major drawback?

ECE315 / ECE515

Cascode Current Mirror (contd.)

- As the cascode current mirror provides a constant current source, it should also possess very high output impedance
- Consider once again the following configuration:

ECE315 / ECE515

Cascode Current Mirror (contd.)

Accuracy and Voltage Swing Trade-off

- V_{b} is chosen to allow minimum V_{p}
- Problem: $\mathrm{V}_{\mathrm{x}} \neq \mathrm{V}_{\mathrm{Y}}$
- $I_{\text {out }} \neq I_{\text {ref }}$

- V_{b} is chosen to allow $\mathrm{V}_{\mathrm{x}}=\mathrm{V}_{\mathrm{Y}}$
- V_{p} is not minimum
- However, $\mathrm{I}_{\text {out }}=\mathrm{I}_{\text {ref }}$

ECE315 / ECE515

Current Mirror (contd.)

Threshold Offset Effect

- The offset between the threshold voltage of two transistors also causes problems in the optimal operation of current mirror
- The threshold offset is typically less than 10 mV for identical transistors \rightarrow even this small offset causes substantial error!!!
- Let us now consider a current mirror configuration where both have the same V_{DS} and all other aspects of the transistors are equal except V_{T}. The expression simplifies to:

$$
\frac{I_{\text {out }}}{I_{\text {REF }}}=\left(\frac{V_{G S}-V_{T 2}}{V_{G S}-V_{T 1}}\right)^{2}
$$

ECE315 / ECE515

Current Mirror (contd.)

Threshold Offset Effect (contd.)

- The plot of ratio error between ideal and imperfect current mirroring as a function of $\Delta V_{T}=V_{T 1}-V_{T 2}$ results into:

ECE315 / ECE515

Current Mirror (contd.)

Threshold Offset Effect (contd.)

- Sometimes it may happen that the factor $\mu_{n} C_{o x}$ (let us call it K^{\prime}) is also mismatched alongwith the offset in the threshold.
- The current mirror equation then transforms to:

$$
\frac{I_{\text {out }}}{I_{\text {REF }}}=\frac{K_{2}^{\prime}\left(V_{G S}-V_{T 2}\right)^{2}}{K_{1}^{\prime}\left(V_{G S}-V_{T 1}\right)^{2}}
$$

In this case its assumed that the aspect ratio is identical (considering that its designer driven!).

- Let us define:

$$
\Delta K^{\prime}=K_{2}^{\prime}-K_{1}^{\prime} \quad K^{\prime}=\frac{1}{2}\left(K_{2}^{\prime}+K_{1}^{\prime}\right) \quad V_{T}=\frac{1}{2}\left(V_{T 1}+V_{T 2}\right)
$$

- Then:

$$
K_{1}^{\prime}=K^{\prime}-0.5 \Delta K^{\prime} \quad K_{2}^{\prime}=K^{\prime}+0.5 \Delta K^{\prime} \quad V_{T 1}=V_{T}-0.5 \Delta V_{T} \quad V_{T 2}=V_{T}+0.5 \Delta V_{T}
$$

ECE315 / ECE515

Current Mirror (contd.)

Threshold Offset Effect (contd.)

- Let us substitute the mirror equation using these assumed parameters:

$$
\frac{I_{\text {out }}}{I_{R E F}}=\frac{\left(K^{\prime}+0.5 \Delta K^{\prime}\right)\left(V_{G S}-V_{T}-0.5 \Delta V_{T}\right)^{2}}{\left(K^{\prime}-0.5 \Delta K^{\prime}\right)\left(V_{G S}-V_{T}+0.5 \Delta V_{T}\right)^{2}}
$$

- Factor out K^{\prime} and $\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)$ to get:

$$
\frac{I_{\text {out }}}{I_{R E F}}=\frac{\left(1+\left(\frac{\Delta K}{2 K}\right)\left(1-\frac{\Delta K^{\prime}}{2 K^{\prime}}\right)\left(1+\frac{\Delta V_{T}}{\left(V_{G S}-V_{T}\right)}\right)^{2}\right.}{\left(\frac{\Delta V_{T}}{\left.V_{G S}-V_{T}\right)}\right)^{2}}
$$

- Assuming these quantities to be small, we get:

$$
\frac{I_{\text {out }}}{I_{\text {REF }}}=\left(1+\frac{\Delta K^{\prime}}{2 K^{\prime}}\right)\left(1+\frac{\Delta K^{\prime}}{2 K^{\prime}}\right)\left(1-\frac{\Delta V_{T}}{2\left(V_{G S}-V_{T}\right)}\right)^{2}\left(1-\frac{\Delta V_{T}}{2\left(V_{G S}-V_{T}\right)}\right)^{2}
$$

ECE315 / ECE515

Current Mirror (contd.)

Threshold Offset Effect (contd.)

- Retaining only the first order products gives:

If the percentage change of K^{\prime} and V_{T} are known apriori, then this expression can predict the worst-case error in the current mirroring capability of the current mirror

$$
\text { For example, if : } \frac{\Delta K^{\prime}}{K^{\prime}}= \pm 5 \%
$$

$$
\text { and: } \frac{\Delta V_{T}}{V_{G S}-V_{T}}= \pm 10 \%
$$

then: $\quad \frac{I_{\text {out }}}{I_{\text {REF }}} \cong 1 \pm 0.05 \pm(-0.2)=1 \pm(-0.15)$

In this example, the maximum error amounts to 15% provided the tolerances in K^{\prime} and V_{T} are correlated

ECE315 / ECE515

Current Mirror (contd.)

Mismatch in Aspect Ratio

- mismatches are commonly present even in identical transistors on the same die $\leftarrow \mathrm{W}$ and L are often mismatched due to mask, photolithography, and diffusion variations \rightarrow this can be significant even for two transistors placed side by side
- One way to overcome these effects is to make transistors much larger than these variations \rightarrow e.g., for transistors of identical size with W and L greater than $10 \mu \mathrm{~m}$, the errors due to the mismatched aspect ratio will be insignificant \leftarrow when compared to errors contributed by offset V_{T} and Channel Length Modulation
- However, many applications (for high current gain applications!) require aspect ratio of transistor $\left(\mathrm{M}_{2}\right)$ to be much larger than the aspect ratio of the reference transistor $\left(\mathbf{M}_{1}\right) \leftarrow$ necessitates creativity in layout techniques !!!

ECE315 / ECE515

Current Mirror (contd.)

Mismatch in Aspect Ratio (contd.)

- Example: we see layout of one-to-four current amplifier below. Its assumed that the lengths are identical $\left(\mathrm{L}_{1}=\mathrm{L}_{2}\right)$. Find the ratio error if:

$$
W_{1}=5 \pm 0.1 \mu m \quad W_{2}=20 \pm 0.1 \mu m
$$

$$
\begin{aligned}
& \frac{I_{\text {out }}}{I_{\text {REF }}}=\frac{W_{2}}{W_{1}}=\frac{20 \pm 0.1}{5 \pm 0.1}=4\left(\frac{1 \pm(0.1 / 20)}{1 \pm(0.1 / 5)}\right) \approx 4\left(1 \pm \frac{0.1}{20}\right)\left(1-\frac{ \pm 0.1}{5}\right) \\
& \Rightarrow \frac{I_{\text {out }}}{I_{\text {REF }}}=4\left(1 \pm \frac{0.1}{20}-\frac{ \pm 0.4}{20}\right) \approx 4(1-(\pm 0.06)) \quad \begin{array}{l}
\text { It is assumed th } \\
\text { have the same s } \\
\text { apparent that th }
\end{array}
\end{aligned}
$$

It is assumed that variations would have the same sign. In this case it is apparent that the ratio error is 1.5% of the desired current ratio

ECE315 / ECE515

Current Mirror (contd.)

Mismatch in Aspect Ratio (contd.)

For large W, it's a good strategy to have W not much larger than L and to put equal transistors in parallel.

- A solution to this problem is to use appropriate layout technique. For example, use four duplicates of transistor \mathbf{M}_{1} to achieve one-to-four ratio. This way the tolerance on $\mathbf{W}_{\mathbf{2}}$ is multiplied by the nominal current gain.

Here its assumed that ΔW should be the same for all the transistors

ECE315 / ECE515

Current Mirror Configurations

- It is a common practice to design current mirror circuits for high output impedance [for achieving near ideal current source!]
- No less important is the voltage headroom [specially for low voltage applications!!!]

ECE315 / ECE515

Current Mirror Configurations (contd.)

- Wilson Current Mirror

ECE315 / ECE515

Current Mirror Configurations (contd.)

- Improved Wilson Current Mirror

Choose dimensions of M_{4} and

$$
\therefore \therefore \frac{I_{\text {out }}}{I_{\text {REF }}}=\frac{1+\lambda V_{D S 2}}{1+\lambda V_{D S 1}}=1
$$

Free from any nonideal effects

ECE315 / ECE515

Current Mirror Configurations (contd.)

- Multiple Cascode

ECE315 / ECE515

Current Mirror Configurations (contd.)

Configurations Current Ratio Output Swing Output Impedance
Simple

$$
\frac{1+\lambda V_{D S 2}}{1+\lambda V_{D S 1}}
$$

$V_{\text {DSat }}$
$\frac{1}{g_{m}} \| r_{o}$

Cascode

Triple Cascode
Wilson $\frac{1+\lambda V_{D S 2}}{1+\lambda V_{D S 1}}$
$2 V_{D S s a t}+V_{T}$
$r_{o}^{2} \cdot g_{m}$

Improved
1
$2 V_{D s a t}+V_{T}$
$r_{o}^{2} \cdot g_{m}$

ECE315 / ECE515

Example-1

Following figure illustrates a source-degenerated current source. Calculate the output resistance at the given bias current by using the following model parameter: $\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=110 \mu \mathrm{~A} / \mathrm{V}^{2}, \lambda=0.04(\mathrm{~L}=1 \mu \mathrm{~m})$ or 0.01 (L= $2 \mu \mathrm{~m}$) /V, $2\left|\phi_{\mathrm{F}}\right|=0.7, \gamma=0.4 \mathrm{~V}^{1 / 2}$

ECE315 / ECE515

Example-1 (contd.)

The dc terminal conditions are:

$$
I_{D}=10 \mu \mathrm{~A} \quad V_{S}=I_{D} * R=10 * 10^{-6} \times 100 * 10^{3}=1 \mathrm{~V} \quad V_{S B}=V_{S}
$$

Now the small signal model of the circuit is:

Simplification gives:

$$
\begin{aligned}
& r_{\text {out }}=\frac{v_{\text {out }}}{i_{\text {out }}}=r+r_{\text {out }}+\left[\left(g_{m}+g_{\text {mbs }}\right) r_{o}\right] r \\
& \text { Can be approximated to: } \\
& r_{\text {out }}=g_{m} r_{o} r
\end{aligned}
$$

ECE315 / ECE515

Example-1 (contd.)

The device parameters can be computed as:
$g_{m}=\sqrt{2 \mu_{n} C_{o x} \frac{W}{L} I_{D}} \square g_{m}=\sqrt{2 \times 110 * 10^{-6} \times \frac{2}{2} \times 10^{*} 10^{-6}} \quad \square \therefore g_{m}=66.3 \times 10^{-6}$
$g_{m b s}=g \frac{\gamma}{2\left(2\left|\phi_{F}\right|+V_{S B}\right)^{1 / 2}} \square g_{m b s}=66.3 * 10^{-6} \frac{0.4}{2(0.7+1)^{1 / 2}} \square \therefore g_{m b s}=10.17 \times 10^{-6}$
$r_{o}=\frac{1}{\lambda I_{D}} \quad \square r_{o}=\frac{1}{0.04 \times 10^{*} 10^{-6}} \quad \square \quad \therefore r_{o}=2.5 \times 10^{6} \Omega$
Thus: $r_{\text {out }}=100 * 10^{3}+2.5 * 10^{6}+\left[\left(66.6 * 10^{-6}+10.17 * 10^{-6}\right) 2.5 * 10^{6}\right] 100 * 10^{3}=21.7 * 10^{6} \Omega$
The approximated: $\quad r_{\text {out }}=66.6 * 10^{-6} \times 2.5 * 10^{6} \times 100 * 10^{3}=16.65 * 10^{6} \Omega$

ECE315 / ECE515

Example-2

Calculate the minimum output voltage required to keep device in saturation in example-1. The model parameters: $\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=110 \mu \mathrm{~A} / \mathrm{V}^{2}, \lambda=0.04$ ($\mathrm{L}=1 \mu \mathrm{~m}$) or $0.01(\mathrm{~L}=2 \mu \mathrm{~m}) / \mathrm{V}, 2\left|\phi_{\mathrm{F}}\right|=0.7, \gamma=0.4 \mathrm{~V}^{1 / 2}$

$$
V_{D}(\min)=V_{S}+\left(V_{G S}-V_{T}\right)(\mathrm{min})=1+0.302=1.302 V
$$

ECE315 / ECE515

Example-3

Using the Cascode circuit shown below, design the W/L of M1 to achieve the same output resistance as the circuit in example-1. Ignore body effect.

Note that the terminal conditions of M2 must change to support the large gate voltage required for M1

ECE315 / ECE515

Example-4

Now calculate the minimum output voltage required to keep the devices in saturation in example-3.

The minimum output voltage for circuit in example-1 is lower than the minimum output voltage for circuit in example-3, therefore is a better choice for low voltage applications

ECE315 / ECE515

Example-5

Calculate the output resistance, while maintaining all the devices in saturation, for the circuit given below. Assume that $\mathrm{I}_{\text {out }}$ is actually $10 \mu \mathrm{~A}$. Ignore body effect.

ECE315 / ECE515

Example-5 (contd.)

$$
r_{o u t}=\frac{v_{o u t}}{i_{o u t}}=r_{o 1}+r_{o 2}+\left[g_{m 2} r_{o 2}\right] r_{o 1}, r_{o 2}=\frac{1}{\lambda I_{D}}=2.5 * 10^{6} \Omega \quad g_{m 2}=\sqrt{2\left(\mu_{n} C_{o x}\right)\left(\frac{W}{L}\right)_{2} I_{D}}=104.9 * 10^{-6}
$$

$$
\therefore r_{\text {out }}=2.5 * 10^{6}+2.5 * 10^{6}+\left[104.9 * 10^{-6} \times 2.5 * 10^{6}\right] 2.5 * 10^{6} \approx 661 * 10^{6} \Omega
$$

ECE315 / ECE515

Example-6

Consider the simple current mirror given below.

Assuming that the drain voltages are identical, what is the minimum and maximum output current measured over the process variations given above. The model parameters: $\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=110 \mu \mathrm{~A} / \mathrm{V}^{2}, \lambda=0.04$ ($\mathrm{L}=1$ $\mu \mathrm{m})$ or $0.01(\mathrm{~L}=2 \mu \mathrm{~m}) / \mathrm{V}, 2\left|\phi_{\mathrm{F}}\right|=0.7, \gamma=0.4 \mathrm{~V}^{1 / 2}$

ECE315 / ECE515

Example-6 (contd.)

We know:

$$
I_{D}=\frac{1}{2} u_{n} C_{0 .} \frac{W}{L}\left(V_{G S}-V_{T}\right)^{2}
$$

$$
\Rightarrow V_{G S}=\sqrt{\frac{2 I_{D}}{K\left(\frac{W}{L}\right)}}+V_{T}
$$

- Assuming equal V_{GS} for both Assuming equal $V_{G S}$ for both $i_{o}=\frac{1}{2} K_{2}\left(\frac{W}{L}\right)_{2}\left(\sqrt{\frac{2 \times I_{\mathrm{Re} f}}{K_{1}\left(\frac{W}{L}\right)}}+V_{T 1}-V_{T 2}\right.$
the transistors, we can express
the output current as:
- We can deduce from this equation that the minimum and maximum of output current will happen under respective following conditions.

	K_{1}	$\mathrm{~K}_{2}$	$(\mathrm{~W} / \mathrm{L})_{1}$	$(\mathrm{~W} / \mathrm{L})_{2}$	$\mathrm{~V}_{\mathrm{T} 1}$	$\mathrm{~V}_{\mathrm{T} 2}$
i_{0} (min)	Max	Min	Max	Min	Min	Max
i_{0} (max)	Min	Max	Min	Max	Max	Min

