Assignment 3

(Please highlight your answer in a box)

1) Find the a.c incremental current $I_{\text {out }}$ flowing from node A to ground when $\lambda=0$ and $\lambda \neq 0$.
(Assuming all devices are equal in size and the tail current source is Ideal)

Figure 1
2) $\mathrm{I}_{\text {bias }}=25 \mathrm{uA}, \mathrm{VDD}=1.8 \mathrm{~V},(\mathrm{~W} / \mathrm{L})_{3,4}=50$ and $(\mathrm{W} / \mathrm{L})_{1,2,5,6,10}=100$. Consider the other transistor size $(\boldsymbol{w} / \boldsymbol{L})$ which are not mentioned as 100 .
a) Calculate the gain of this amplifier?
b) Slew rate of the amplifier when $C_{L}=5 \mathrm{pF}$
c) Simulate in ELDO and compare (Download 130nm PTM file for VDD Supply 2V and calculate all parameters required and proceed)

Figure 2
3) In Fig.3, $V_{D D}=1.8, R_{D}=2 K$. Initially it was designed for a gain of 4 (Pick your own 130 nm technology file and get gain of 4). Now bias the transistor which you have used to achieve gain 4 in order to achieve maximum gain without distortions.
Calculate the:
a) D.C level of Input
b) D.C level of output node
c) Power Dissipation
d) Threshold voltage of M1
e) Value of parameter \boldsymbol{K}

Figure 3

