Home Assignment # 2

Scheme of Marking: Binary Marking (Please highlight your answer in a box) Data: $\mu_n c_{ox} = 100 u A/V^2$, W/L = 1, $V_t = 1V$. All the Simulations must be carried out in ELDO

Total Marks: 10

<u>Q1:</u>

(a)Name the type of circuit in Fig. 1 (a).

Now, circuit shown in Fig. 1 (a) is required to have output impedance of **5Kohms**. b) Determine the biasing **current** I_0 .

c) Then Fig. 1(a) is actually implemented as Fig. 1 (b). The Quiescent voltage across the resistor R_0 is 5V. Determine the small signal gain for very high frequencies (Neglect all the device capacitances)

<u>Q2</u>: Transistor M₁ in the Fig. 2 is biased using M₀₀-M₀. Assuming C₁, R₁, and R₂ very large and $i_d/v_i = 20\mu S$ where i_d is small signal drain current.

(a) Determine bias current I_0 by assuming all the devices are in saturation.

(b) If M_0 is at the verge of saturation, determine R_1/R_2 .

(c) Assume $v_0/v_i = -4$. Determine R_L assuming L₂, C₂ being very large.

Determine condition for L₂ at signal frequency of 1MHz

<u>Q3</u>: Find out the output impedance and input impedance for the circuit shown in Fig. 3

<u>Q4</u>: Fig.4 shows MOS transistors in various bias conditions. Identify the region of operations of devices (**Marks will be awarded only if all are correct**).

Figure 4

- 5) Refer Fig.5 and answer the following:
 - a) Perform DC Analysis (Operating point Analysis) and write down the values of $V_{gs},\,V_{ds},\,V_{gd}$
 - b) Discuss the effect of R_{gl} on biasing (Plot trends)
 - c) Disuss how the gain changes with variable R_D
 - d) Plot the trends of gain of the Amplifier with $R_{\rm gl}$ and discuss with appropriate explanation
 - e) Plot Gain with variable C_1 (1µf to 100µf at 10µf step) and variable R_L (1K to 100K at a step of 10K)

Figure 5