Home Assignment \# 2
 ECE - 315 [Only for BTech Students]

Due Date: $11^{\text {th }}$ Sept 2015
Total Marks: 10

Q1: The threshold voltage of the transistor is $V_{T}=2.0$ Volts, $K=0.125$ $\mathrm{mA} / \mathrm{V}^{2}$.

The capacitors are very large.

Find the small-signal gain $A_{v}=v_{0} / v_{i}$ of this amplifier.

Q2: For the circuit below, \mathbf{V}_{G} is the $D C$ bias at the gate, $\boldsymbol{v}_{\mathrm{i}}$ is the smallsignal input and v_{0} the small-signal output. The transistor is known to be in the saturation region.

The capacitor in the circuit is extremely large.

1) Draw the resulting small-signal circuit.
2) In terms of g_{m}, find the small-signal gain $A_{v}=v_{0} / v_{i}$.

NOTE: Do not attempt any DC analysis; provide your solutions directly in terms of g_{m}. Ignore the output resistance (i.e., $r_{0}=\infty$).

Q3: The capacitor in the circuit below is very large.
Determine the small-signal voltage gain ($\left.A_{v}=v_{0} / v_{i}\right)$ of the amplifier below.

Q4: Take the example 3.1 (solved) in your text book on page 50. Demonstrate both the curves using Eldo and Cadence Tools.

Q5: The capacitors in the circuit below are very large.
I have completed the $D C$ analysis-I determined that $V_{G S}=4.0 \mathrm{~V}$, and CHECKED that the MOSFET is in saturation.

Finish the remainder of the analysis, to:

1. Determine and carefully draw the simplified small-signal circuit (be complete and precise!).
2. Determine the small-signal voltage gain $\left(A_{v}=v_{0} / v_{i}\right)$ of the amplifier below.

