## Home Assignment # 2 ECE - 315 [Only for BTech Students]

## Due Date: 11<sup>th</sup> Sept 2015

## Total Marks: 10

**Q1:** The threshold voltage of the transistor is  $V_T = 2.0$  Volts, K = 0.125 mA/V<sup>2</sup>.

The capacitors are very large.

Find the small-signal gain  $A_v = v_0/v_i$  of this amplifier.



**Q2:** For the circuit below,  $V_G$  is the DC bias at the gate,  $v_i$  is the small-signal input and  $v_0$  the small-signal output. The transistor is known to be in the **saturation** region.

The capacitor in the circuit is extremely large.

- 1) Draw the resulting small-signal circuit.
- 2) In terms of  $g_m$ , find the small-signal gain  $A_v = v_0/v_i$ .

**NOTE:** Do **not** attempt any **DC analysis**; provide your solutions directly in terms of  $g_m$ . Ignore the output resistance (i.e.,  $r_o = \infty$ ).



Q3: The capacitor in the circuit below is very large.

Determine the small-signal voltage gain  $(A_v = v_o/v_i)$  of the amplifier below.



Q4: Take the example 3.1 (solved) in your text book on page 50. Demonstrate both the curves using Eldo and Cadence Tools.

Q5: The capacitors in the circuit below are very large.

I have completed the DC analysis—I determined that  $V_{GS}$  =4.0 V, and CHECKED that the MOSFET is in saturation.

Finish the remainder of the analysis, to:

1. Determine and carefully draw the simplified small-signal circuit (be complete and precise!).

2. Determine the small-signal voltage gain  $(A_v = v_0/v_i)$  of the amplifier below.

