ASSIGNMENT # 1 Analog CMOS Circuit Design (ECE315 / ECE515) Total Marks: 10 (each questions carry equal marks)

A three terminal Non linear device shown in Figure - 1 exhibits definite I₁ vs V₁, I₁ vs V₂, I₂ vs V₂ and I₂ vs V₁ characteristics.

Assume that the Non Linear Device shown in Figure (1) can be modelled as,

 $I_1 = f(V_1, V_2)$ $I_2 = g(V_1, V_2)$

Figure 1

Now answer the following Questions (Your Answers must be Qualitative. An intuitive answer leads blunders)

a. Figure (2) shown below depicts *I₁ vs V₁* characteristics of two Non Linear devices (Device (i) and Device (ii)). Assume that the characteristics *I₁ vs V₂*, *I₂ vs V₂* and *I₂ vs V₁* are identical for both the amplifiers. Find out which of the Non Linear devices will yield maximum gain at the given operating point shown in the figure (Green Circle).

- b. Figure (3) shown below depicts *I₂ vs V₁* characteristics of two Non Linear devices (Device (i) and Device (ii)). Assume that the characteristics *I₁ vs V₂*, *I₂ vs V₂* and *I₁ vs V₁* are identical for both the amplifiers. Find out which of the Non Linear devices will yield maximum gain at the given operating point shown in the figure (Green Circle).
- 2. Circuit shown in Figure 4 is designed for small signal gain of 4. Consider R_1 , $R_2 >> 100K$ and R_D and R_L are same. The supply voltage V_{DD} must be chosen in such a way that at the operating point V_{DS} should be V_{GS} + 1. You have carried out the design assuming $\lambda = 0$. However, after analysis you realized that $\lambda = 0.0625V^{-1}$.
 - a. What is the actual small signal gain.
 - b. What is the value of R_D to be used to restore the small signal gain to 4.

3. Assume that you have got two NMOSFET's with one at nominal threshold voltage (V_T) and other having a variation ΔV_T from its nominal value. How the transconductance (g_m) and Drain Current (I_{DS}) of the device varies with ΔV_T .

Repeat the same by assuming there is a variation in process parameter (K) = $\mu C_{ox}(W/L)$ and no variation in threshold voltage.

- 4. For the circuit shown in Figure 5: $(R_s = 50K\Omega, R_g = 50M\Omega, R_L = 100K\Omega, I = 128 \mu A, V_T = 1V, \mu C_{ox}(W/L) = 100\mu A/V^2)$
 - a. What kind of biasing scheme is incorporated and explain how DC biasing occurs in the circuit.
 - b. Determine the constraints on C_1 and C_2 such that the circuit behaves as an Amplifier.
 - c. For the same circuit an Input signal is applied with a frequency of 10KHz what are the values of C_1 and C_2 such that the AC coupling will not disturb in AC incremental analysis.
 - d. Implement the same using Cadence or SPICE and ELDO simulator for the values you got in *Part.3* and compare the gain of the amplifier with theortical gain.
 - e. Calculate the Input and output Impedence of the Amplifier for the same figure 2

Figure 5