CSE322 Theory of Comput. (L26)

$NP(k) = NTIME(n^{k})$ $NP = P(0) \cup P(1) \cup P(2) \cup \dots$

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

CHOTCHKIES RESTAURANT APPETIZERS MUXED FRUIT 2.15 FRENCH FRIES 2.75 SIDE SALAD 3.35 HOT WINGS 3.55 MOZZARELLA STICKS 4.20 SAMPLER PLATE 5.80 SAMDWICHES SALAD	WE'D LIKE EXACTLY \$ 15. 05 WORTH OF APPETIZERS, PLEASE. (EXACTLY? UHH HERE, THESE PAPERS ON THE KNAPSACK PROBLEM MIGHT HELP YOU OUT. LISTEN, I HAVE SIX OTHER TABLES TO GET TO - - AS FAST AS POSSIBLE, OF COURSE. WANT SOMETHING ON TRAVELING SALESMAN?
BARBECUE 6.55	

<=p: polytime manyone reduction def AlgoA(x): 1. If A <= B and B <= C, then A <= C |x|^{K1} 1. y-ked(x) Red M^{K1} 2. If A <= B and B is in P, then A is in P (x)². do what MgB(x) does dols 3. If A <= B and A is not in P, then B is not in P. Total: 1×1×1×1×1×1×2 Proof by contradiction. $\leq 1 \times 1^{K_1} \times (... | \times 1$ + $1 \times 1^{K_1 \times 2} \leq 1 \times 1^{K_1}$ = $2 (\times 1^{K_1 \times 2})$ Tutorial: question on Smp.

NP-completeness

(reductions between specific NP-complete problems (Ch 7.5) are not in syllabus)

Pvs NP???

How to show P != NP ?

How to show P = NP?

P S NP S EXP

It is known that P is a proper subset of EXP

7.37 Suppose P = NP. Juider D fr 3002 Show how to compute size of the largest clique in polynomial time.

7.6 Show that P is closed under union, concatenation Show that NP is closed under Kleene star.

