CSE322 Theory of Comput. (L26)

$$
\begin{aligned}
& N P(k)=\operatorname{NTIME}\left(n^{\wedge} k\right) \\
& N P=P(0) \cup P(1) \cup P(2) \cup \ldots
\end{aligned}
$$

MY HOBBY:
EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

$S_{m}=p$: polytime manyone reduction def Algo $A(x)$:

1. If $A<=B$ and $B \Leftrightarrow C$ then $\left.A \ll\right|_{\mid x^{k+}} \quad y \operatorname{yred}(x)$
2. If $A<=B^{\text {n }}$ and B is in $P^{\text {AqP }}$, then A is in $P(y)^{k_{2}}$, do whax A gige (x)
3. If $A<=B$ and A is not in P, then B is not in P Proof by contratiction.

Tutornal: quastion on Σ^{2} ? Tetal: $|x|^{4 /+1 y^{12}}$ doses
\leqslant_{m} : poly-time many-one redn.

JNDTM decider M for H running ing porn g pine
L is $N P$-hard if for EVERY H in $N P, H \leq=m p L$.

L is NP-complete if $(a) L$ is in NP, and (b) L is $N P$-hard.
Lemma: Suppose H is $N P$-complete. If $H<=m p L$, then L is $N P$-hard.

How to prove that L is NP-complete?

1. Prove L is in NP 2. Prove L is $N P$-hard by reducing FROM some NP-complete H.
First NP-complete problem: SAT

NP-completeness

$Q:$ If B is $N P$-complete and B is in P then ... $P=N P$
Q : If B is $N P$-complete and B is not in P then ... $P \neq N P$
$Q:$ If B is $N P$-complete, C is in NP and $B<C$ then
 HENRI $H \leq B$
$\bar{B} \in \operatorname{con} P$
To show L is NP-complete ... $\forall H \in \operatorname{coNP}, \bar{H} \in N P, \bar{H} \leq B \quad \Rightarrow H \leq B$
\therefore Bio collithard
(i) Show L is in NP ...
(ii) Choose any NP-complete language MYFAVNP
(iii) Snow that MYFAVNP $<=L$ by a polytime many-one red.

Undirected HC is NP-complete. VHC $E N P$.

- UHC is NPherord.
(using the fact that Directed HC is NP-complete)

G has a Hamlycle iff G^{\prime} has a Hamaycle
def Red (G direceted): / omphat undirecter G '

$$
\begin{aligned}
& G^{\prime}=\text { tommove drections } \\
& \text { neturn } 6^{6} \\
& \Rightarrow \text { If } G \text { has a HC, than } G^{\prime} \text { hao a the }
\end{aligned}
$$

* Even if G dore may

P vs NP???

How to show $P!=N P ?$

How to show $P=N P ?$

$$
P \subseteq N P S_{2} E \times P
$$

It is known that P is a proper subset of EXP
7.37 Suppose $P=N P$.

Show how to compute size of the largest clique in polynomial time.
7.6 Show that P is closed under union, concatenation Show that NP is closed under Kleene star.

Can you solve them? (and get $A+$)

NP-intermediate

Example

- Distances

11109876655432211

0	1	6	3	9	11
0	1	2	6	8	11

Not in syllabus

1. Given f_{1} can the numbers $1 \ldots . n$ be put in + boxes s.t. no box has any triple s.t. $x+y=2$.
2. Given two graphs, are they isomorphic?
3. Given a number, is it prime?
4. Given integers $n,+1$ and +2 , does n have a factor between $+1, t 2$?
5. Turnpike problem (reconstruct a point set from the pairwise distances)
6. Given two binary trees $T 1$ and $T 2$, and a_{n} integer t, can T1 be changed to T2 using af most t rotations?
