CSE322 Theory of Computation (L $\frac{16}{16}$)

$$
\begin{array}{ll}
M \equiv M^{\prime} & L(M)=L\left(M^{\prime}\right) \\
M \text { accepts } & \omega \text { iff } M^{\prime} \text { accepts ts }
\end{array}
$$

TM on input w may halt \& accept

- Two -way infinite tape halt \& reject
- 2,3,.., K -finite \# tapes not halt (loop)
\rightarrow infinite \# types. x
- non-deternimistic moves
- multi-steff TM

TM with stationary move

$$
=\left\langle Q_{i} ; \delta\right\rangle
$$

Given a $T M M$ whose head movement belongs to $\{L, R, S\}$ construct another $T M$ N whose head movement belongs to $\{L, R\}$ (usual type), such that...
$=\angle Q^{\prime}$, for any input x,
$Q_{0}^{\prime}=Q \cup \quad M(x)$ halts iff $N(x)$ halts and Q $x\{1\} M(x)$ accepts of $N(x)$ accepts.

$$
\delta^{\prime}(q, a)=\left\{\begin{aligned}
\delta(q, a) & \text { if } \delta(q, a) \\
& =(\cdots, L(R) \\
((a,), b, R) & \text { if } \delta(q, a)
\end{aligned}\right.
$$

$$
\delta^{\prime}((r, 1), a)
$$

Show how to simulate one move of M by a sequence of moves of N.

Multitape TM $=\left\langle Q, \Sigma, P, \delta, q, q q_{1}, q_{00}\right\rangle$
$k=$ Number of tapes, each with independent read/write head Input on first tape, other tapes start empty
d : \qquad $\left(Q \times \Gamma^{k}\right)$ $\rightarrow Q \times \Gamma^{K} \times\{L, R\}^{K}$

$$
=\{\omega: \omega=\operatorname{rev}(\omega)\}
$$

Deciding PALINDROME using 2-tape TM

(0) Mark the (stael of list take
(1) Move both head to right, copying from lost to and tape
(2) Move lIst heap to the leftmost cell
(3) Move Isth head to right, and head to left, Comparing symbols in each steps

Multitape TM equivalent to 1-tape TM

First move of ${ }^{\# \prime}$:

Simulation of one move of \mathbb{M} :
(3) One $L \rightarrow R$ scan to write new symbol
(3) One LTR scan to place head marks Require making space
(1) One $l \rightarrow R$ scan to read all symbols under 3 heads, remembers them in
(2) its state to implement $\delta_{\mu}\left(q_{1}\left(t, t_{2}, t_{3}\right)\right)$
by going to a

$$
=\left(r,\left(t_{1}^{\prime}, t_{2}^{\prime}, t_{3}\right),\right.
$$

$$
(R, R, R))
$$

Non-deterministic 1-tape TM (NDTM)
Non-deterministically choose actions at every state.
\qquad $\rightarrow P(Q \times \Gamma \times\{L, R\})$
NDTM accepts w if? there is some nondeterministic branch leading to Race.

Exercise: Formally define acceptance by an NDTM.
NDTM to accept

$$
\# 100 \# 01 \# 101 \# 110 \in L
$$

$\left\{\# \omega 1 \# w 2 \ldots \#_{k} \# n: n, w i\right.$ are binary integers, there exists some wi's whose sum is $n\}$
(1) $L \rightarrow R$ move and nondeterminishically mark some of $\omega_{i} s$.
(2) L-R." "add the marked wis and write the total Tater the input, separated by $a \notin$
(3) gobo q_{a} if $\mathrm{T}=n$

1-tape NDTM to 3-tape DTM M

Daccefts ω iff Macceptsw.
\exists non-deterministic branch \sim qqee.

12231232
For lst move, use 2nd nowat choice Fo and move,"

3 rd
4 m
$18 t$
Thm: For any NDTM N, there is a DTM M s.t. for any input x $N(x)$ accepts if and only if $M(x)$ accepts. infinite loop.

Do a BFS traversal of
NDTM evaluation tree.
(Why not DFS traversal ?)
Given an $N D T M N=\langle Q, \ldots, d N \ldots\rangle$, show that a $D T M M=\langle Q M, \ldots, d M, \ldots\rangle$ can be constructed with same L. 1. $\operatorname{Order}(q, a,\{L, R\})$ tuples in $d N(. .$.$) and construct d^{\prime}(q, a, i)=i$-th tuple. Let $b=$ max $\{i\}$ for all $d N()$.
2. Add $\{1,2,3 \ldots b\}$ to tape alphabet of M.
3. Construct M that runs in 3 stages.

Ha. Stage a [Prepare address]: Increment value on address-tape in base-b. Reset head to left.
4b. Stage b [Prepare input]: Copy from input tape to simulation tape. Reset head to left.
tc. Stage c [Simulate]: Make transitions of the form
$d M(q, a, b, i)=d^{\prime}(q, b, i)$ where a:input head (unused during simulation), b : simulation head, i:address head Always move address head to right. When reaches blank, move to (Ha).

