CSE322 Theory of Computation (L15)

Today
Turing Machines

The Turing Machine !!!

TM

$$
\begin{aligned}
& =\text { DEA }+++++ \\
& =\text { PD }+++++
\end{aligned}
$$

https://www.youtube.com/watch? $v=E 3 k e L e M w f H Y$
Churh-Turing(-Post) Hypothesis:
All reasonable models of (general-purpose) computers are equivalent.
In particular, they are equivalent to a Turing machine.
\square

Input Alph (does not contain blank symbol) \sum Tape Alph (contains blank symbol and all input Syphons Γ transition $f n d:(Q \times \Gamma) \rightarrow(Q \times \Gamma \times\{L, R\})$ start state q0, accept state qa, reject state qr $>$
If head is on the leftmost cell and $d()$ specifies a left move, head does not move.

	a	b	\$	\checkmark	X
q_{0}	$\left(q_{1}, \mathrm{x}, \mathrm{R}\right)$	$\left(q_{6}, \mathrm{x}, \mathrm{R}\right)$	$\left(q_{5}, \mathrm{x}, \mathrm{R}\right)$	reject	reject
$q_{1} a_{1} 1$	$\left(q_{1}, \mathrm{a}, \mathrm{R}\right)$	$\left(q_{1}, \mathrm{~b}, \mathrm{R}\right)$	$\left(q_{2}, \$, \mathrm{R}\right)$	reject	reject
$q_{2} \boldsymbol{a}^{2}$	$\left(q_{4}, \mathrm{x}, \mathrm{L}\right)$	reject	reject	reject	$\left(q_{2}, \mathrm{x}, \mathrm{R}\right)$
q_{3}	$\left(q_{3}, \mathrm{a}, \mathrm{L}\right)$	$\left(q_{3}, \mathrm{~b}, \mathrm{~L}\right)$	reject	reject	$\left(q_{0}, \mathrm{x}, \mathrm{R}\right)$
q_{4}	reject	re ject	$\left(q_{3}, \$, \mathrm{~L}\right)$	reject	$\left(q_{4}, x, \mathrm{~L}\right)$
q_{5}	reject	reject	reject	$\left(q_{\text {acc }}, \sqcup, \mathrm{R}\right)$	$\left(q_{5}, \mathrm{x}, \mathrm{R}\right)$
$q_{6} b_{1}$	$\left(q_{6}, \mathrm{a}, \mathrm{R}\right)$	$\left(q_{6}, \mathrm{~b}, \mathrm{R}\right)$	$\left(q_{7}, \$, \mathrm{R}\right)$	reject	reject
$q_{7} b_{2}$	reject	$\left(q_{4}, \mathrm{x}, \mathrm{L}\right)$	re ject	re ject	$\left(q_{7}, \mathrm{x}, \mathrm{R}\right)$
$q_{\text {acc }}$	No need to define				
$q_{\text {rej }}$	No need to define				

1. Cross off the first character a or b in the input (i.e. replace it with x , where x is some special character)) and remember what it was (by encoding the character in the current state). Let u denote this character.
2. Move right until we see a $\$$.
3. Read across any x's.
4. Read the character (not x) on the tape. If this character is different from u, then it immediately rejects.
5. Cross off this character, and replace it by x .
6. Move left past the $\$$ and then keep going until we see an x on the tape.
7. Move one position right and go back to the first step.
$\{w: w$ is a string over 0 whose length is a power of 2$\}$
TM (w) :
8. Make the first cell blank.
9. Move right until blank is reached. While moving right:
a. Cross alternate 0
10. When blank is reached,
a. If tape contains a single 0 , go to qa
b. If tape contains odd number (3 or more) of Os, go to qr
c. Else, move left until a dotted cell is found. Goto 2.

Configuration (instant. description): u.q.v

u : tape left of head to first non-blank symbol
v : tape from head to last non-blank symbol
q : state
yields
Define $\begin{cases}\text { ua.qi.bv } \rightarrow \text { u.qj.acv } & \text { if } d\left(q_{i}, b\right)=\left(q_{j}, c, L\right) \\ \text { ua.qi.bv } \rightarrow \text { uac.qj.v } & \text { if } d\left(q_{i}, b\right)=\left(q_{j}, c, R\right)\end{cases}$

Initial configuration on input w.

$$
q_{0} w
$$

$u q_{j} a c v$
Accepting config. \Rightarrow state would be q_{a}.
$\{w: w$ is a string over 0 whose length is a power of 2$\}$
TM (w) :

1. Make the first cell blank.
2. Move right until blank is reached. While moving right:
a. Cross alternate 0
3. When blank is reached,
a. If tape contains a single 0 , go to qa
b. If tape contains odd number (3 or more) of Os, go to qr
c. Else, move left until a dotted cell is found. Goto 2.

Maccepts w if ...
there exists a sequence of configurations $C 1 \subset 2 \ldots C_{k}$ s.t.
pow

1. $C 1$ is the starting config. of M on input w
2. Each $C(i)$ yields $C(i+1)$
3. C_{k} is an accepting configuration

Similarly, M rejects w if ...
M is called a decider if M always halts on any input.
$L=\{\omega: M$ accepts $\omega\}$
$\star L$ is (Turing)-recognizable (or recursively enumerable) if there is some TMM s.t. for all w in $L, M(w)$ halts and accepts. $\star L$ is (Turing)-decidable (or recursive) if there is some $T M M$ s.t. M always halts \& for all w in $L, M(w)$ accepts. $\star L(M)=\{w: M \operatorname{accepts} w\}$

Are these recognizable? decidable?
$\{(a, b, c): a, b, c$ are binary strings representing integers $\& a+b=c\}$
$\left\{\left(a 1, a 2, \ldots, a_{n} \$ k \phi j\right): a_{i}^{\prime}\right.$ s are binary strings representing integers $\&$
$k_{1} j$ are indices between 1 to $n \&$
the k-th largest integer among $\left\{a_{i}\right\} s$ is $\left.a_{j}\right\}$
$\{(n, p, q): n, p, q$ are binary string representing integers $\&$ n has some factor f s.t. $p<=f<=q\}$

