
CSE322 Theory of Computation (L14)

Today
PDA to CFG



L = { w.rev(w) }

ID of a PDA : 
(state, remaining input, stack contents)
( q , aw , sZ)  |-  (q', w, tZ)     
       means    d(q,a,s) = {(q',t), ...}
Notation: |-* denotes multiple moves

(q0,1111,e) |-* (qa, e, e)



(q1,  w1    ,  S1)   |-

(q2,  w2   ,  S2)   |-

...

(qk,  wk   ,  Sk)   |-

(q1,  w1.y  ,  S1)   |-

(q2,  w2.y ,  S2)   |-

...

(qk,  wk.y  ,  Sk)   |-

(q1,  w1 ,  S1   )   |-

(q2,  w2,  S2   )   |-

...

(qk,  wk ,  Sk   )   |-

Consider a sequence of transitions: (p, w, S) |-* (q, y, T).

(q1,  w1 ,  $   )   |-

(q2,  w2,  ...$   )   |-

...

(qk,  wk ,  ...$   )   |-

stack always has $, 
never empty

Can we remove $ ?
What if no step can both
pop & push?



PDA to CFG
Construct G from PDA: PDA accets w iff G generates w.
Modify PDA:
* One accepting state qa.
* Stack is empty at beginning and at end.
* Each transition either pushes or pops but not both.

(p', x) in d(p, a, e) &
(q, e) in d(q', b, x) for some x



Take w in L. First move must be push and last move must be pop.
Either w = w1.w2 and for some intermediate r,

(q0, w1w2, e)  |-*  (r, w2, e)  |-*  (qa, e, e)

PDA to CFG
Lemma: A(p,q) =>* w              w s.t.   (p,w,e) |-* (q,e,e)

L = { w |  (q0, w, e) |-* (qa, e, e) }     { w derived from A(q0,qa) }

or, w = a.w'.b   and   (q0, aw'b, e)  |-  (p', w'b, c)  |-*  (q', b, c)  |- (qa, e, e)

Idea



If A(p,q) =>* x, then (p,x,e) |-* (q,e,e).

Proof by induction on k=length of derivation of x from A(p,q).
Base case: k=1. A(p,p) => e. (p,e,e) |-* (p,e,e).
Ind. Hyp.: Stmt true for k=1...n
Ind. Step: To prove stmt for k=n+1.
A(p,q) => ... => ... => ... n+1 times => x

Case analysis on the first step of derivation

Apq => Apr Arq =>* x
So, Apr =>* x1 and Arq =>* x2 & x=x1 x2

By IH,
(p,x1,e) |-* (r,e,e) & (r,x2,e) |-* (q,e,e).
By the previous lemma,
(p,x1 x2, e) |-* (r,x2,e).
Combining,
(p, x1 x2, e) |-* (q, e, e).



If (p,x,e) |-* (q,e,e), then A(p,q) =>* x.
Induction on k = number of transitions.
Base case: k=0, so p=q, x=e.
Ind Hyp.: True for k=0...n
Ind Step: (p,x,e) |- ... |- ... (n+1) times |- (q,e,e)

Case analysis

Stack is empty only at beginning and at end Stack is empty in the middle too

First symbol pushed (c) must be popped at last.
(p, a x' b, e) |- (p', x' b, c) |- * 

         (q', b, c)    |- (q, e, e)
(p', c) in d(p, a, e) & (q,e) in d(q',b,c) =>
G has rule: A(p,q) => a A(p'q') b

Since (p', x'b, c) |-* (q', b, c) without emptying
stack, none of its transitions can depend on the
c on the stack. So, the following is also a valid
transition: (p', x', e) |-* (q', e, e).

By IH, A(p'q') =>* x'.
Therefore, A(p,q) => a A(p',q') b => a x' b.



CFG to PDA

Ex. Generate PDA for
S -> aTb | b,    T -> Ta | e

Construct PDA from G: G generates w iff PDA accepts w.
PDA: Non-deterministically guess the derivation/parse tree





Show that ... 
{w over {a,b,c} : #a(w) = #b(w) = #c(w) } is not CFL

L = above language
L1 = a*b*c*
Prove that L intersect L1 is not CFL.
Then prove that L is not CFL.



Closure under NOPREFIX
NOP(L) = { w in L s.t. no proper prefix of w is in L }

What is NOP(L1) = ?
What is NOP(L2) = ?
What is NOP(L1 U L2) = ?
Prove that L1 is CFL, L2 is CFL and L is CFL.
Q: How to prove NOP(L) is NOT CFL?
Let L3 = a* b* cc c*
What is L4 = NOP(L) intersect L3?
How to prove that L4 is not CFL?



Prove L = { w=a* b* : #(a,w) != #(b,w) and #(a,w) != 2 #(b,w) } is CFL.

Divide L = L1 U L2 U L3 and show that each is CFL.

Exercise: Show that L1 = { w=a*b* : #(a,w) < #(b,w) } is CFL.
Exercise: Show that L2 = { w=a*b* : #(a,w) > 2 #(b,w) } is CFL.

Show that L3 = { w=a*b* : #(b,w) < #(a,w) < 2 #(b,w) }
Let i = #(a,w),  j=#(b,w)
Show that i=k+2h and j=k+h.


