CSE322 Theory of Computation (L14)

Today
PDA to CFG

$L=\{\omega . \operatorname{rev}(\omega)\} \quad$ accepting $\mathbb{D}:$ State $\in F$
ID of a PDA:
no input
(state, remaining input, stack contents) should be left
$(q, a w, s Z) \mid-(q, w,+Z)$
means $d(q, a, s)=\{(q, t), \ldots\}$
Notation: $1-\star$ denotes multiple moves
$(q 0,1111, e) \mid-\lambda(q a, e, e)$


Consider a sequence of transitions: $(p, w, S) \mid-\lambda(q, y, T)$.
(T) $(p, w z, s) H^{*}(q, y z, T)$

What if no step can both pop \& push?
(2) if $\omega=\omega^{\prime} z, y=y^{\prime} z$, then $\left(p, w^{\prime}, s\right) H^{*}\left(q, y^{\prime}, T\right)$
(3) $(b, w, s v) \vdash^{*}(q, y, T v)$

$$
\left(p, w s^{\prime}\right) \vdash^{*}\left(q, y, T^{\prime}\right)
$$

(4) *) if $s=s^{\prime} \$$, $T=T \$$, under special conditions,

PDA to CFG
Construct $G$ from PDA: PDA accets $w$ iff $G$ generates $w$.
Modify PDA:

* One accepting state qa.
* Stack is empty at beginning and at end.
* Each transition either pushes or pops but not both.

$$
a|\varepsilon \rightarrow x \quad a| x \rightarrow \varepsilon \quad a / x \nless y
$$

$$
\rightarrow \text { (0) } \xrightarrow{\varepsilon, \varepsilon \rightarrow \$} \underbrace{a_{1}, \varepsilon \rightarrow a} \text { (3) } \xrightarrow[\varepsilon_{1}, a \rightarrow \varepsilon]{\varepsilon_{1} x \rightarrow \varepsilon} \xrightarrow{2^{b, a \rightarrow \varepsilon}} \text { (4) }
$$

> Variables
> $A_{00} A_{01} \cdots A_{05}$ start
> (A) $\frac{\text { Rules }}{A_{00} \rightarrow \varepsilon} \quad A_{11} \rightarrow \varepsilon \cdots A_{55} \rightarrow \varepsilon \quad A_{q q} \rightarrow \varepsilon \quad \forall_{q}$
> $\cdots A_{50} \cdots A_{55} \quad A_{05} \rightarrow A_{01} A_{15} \quad A_{05} \rightarrow A_{02} A_{25} \quad A_{p q} \rightarrow A_{p r} A_{\text {aq }}$
> $A_{p q} \quad \forall p, q \in Q$
> $\cdots A_{55} \rightarrow A_{50} A_{05}$ $\forall p, r$
$A_{05} \rightarrow \varepsilon A_{14} \varepsilon$
$\underset{q}{ } q_{q} q^{4}(q+1) \quad A p q \rightarrow(a) A_{p^{\prime} q}\{(b)$ if
$A_{13} \rightarrow a A_{13} b \quad l(q, e)$ in $d(q, b, x)$ for some $x$
(p) $\xrightarrow{a, \varepsilon \rightarrow x}$
$\xrightarrow{b, x \rightarrow \varepsilon}$

PDA to CFG
Lemma: $A(p, q) \Rightarrow \star w \equiv w$ s.t. $(p, w, e) 1-\lambda(q, e, e)$

$L=\{w \mid(q 0, w, e) 1-t(q a, e, e)\} \equiv\{w$ derived from $A(q 0, q a)\}$ starling ID
final
Idea
Take $w$ in $L$. First move must be push and last move must be pop.

$$
\left.\begin{array}{c}
\text { Either } w=w 1 . w 2 \text { and for some intermediate } r, \\
\qquad \begin{array}{c}
(q 0, w 1 w 2, e) 1-\star(r, w 2, e) 1-\lambda(q a, e, e) \\
\text { empty stack }
\end{array} \\
\therefore(q 0, \omega 1, \varepsilon) \vdash^{*}(r, \varepsilon, \varepsilon)
\end{array}\right\} \begin{aligned}
& A_{q 0, q a} \rightarrow A q 0, r \quad A_{r, q a} \\
& \Rightarrow^{*} \omega, \omega_{2}
\end{aligned}
$$

or, $w=a \cdot w^{\prime} . b$ and $\left(q 0, a w^{\prime} b, e\right) 1-\left(p^{\prime}, w^{\prime} b, c\right) 1-A\left(q^{\prime}, b, c\right) 1-(q a, e, e)$
first symbol pushed popped at last. Stack not empty, a move can't pop + push

$$
A_{q 0, q a} \rightarrow a A_{p^{\prime} q^{\prime}} b
$$

$\therefore$ No intermediate transition can depend on, $x$

$$
\Rightarrow\left(p^{\prime}, \omega^{\prime} b, \epsilon\right) \vdash^{*}\left(q^{\prime}, b, \epsilon\right)
$$

If $A(p, q) \Rightarrow \lambda x$ then $(p, x, e) 1-\star(q, e, e)$. $k=1$ single Step derivation
Proof by induction on $k=$ length of derivation of $x$ from $A(p, q)$.
Base case: $k=1 . A(p, p) \Rightarrow$ e. $(p, e, e) 1-\star(p, e, e)$.
$A_{p q} \Rightarrow X$ only class $A$

Ind. Hyp:: Stat true for $k=1 \ldots n$
$\mathrm{Agq} \rightarrow \varepsilon$ rule

$$
\begin{aligned}
& \therefore q q q z x=\varepsilon
\end{aligned}
$$

Ind. Step: To prove stat for $k=n+1$.
$A(p, q) \Rightarrow \ldots \Rightarrow \ldots \Rightarrow \ldots n+1$ times $\Rightarrow x$
class $B$ rule Case analysis on the first step of derivation class Crude

$$
A_{p q} \Rightarrow A p r A_{r q} \Rightarrow>^{\star} x=\lambda_{1} x_{2}
$$

So, $A_{p r} \Rightarrow \star \times 1$ and Arg $_{\text {a }} \Rightarrow \star \times 2 \& x=x 1 \times 2$
By IH,

$$
(p, x 1, e) 1-\star(r, e, e) \&(r, x 2, e) \mid-\star\left(q, q_{1}, e\right) .
$$

(By the previous lemma, $\rightarrow(p, \times 1 \times 2, e) 1-\star(r, \times 2, e)$.

$(p, \times 1 \times 2, e) 1^{-\star}(q, e, e)$.
$x$

If $(p, x, e) \mid-\lambda(q, e, e)$, then $A(p, q) \Rightarrow \lambda x$.

$$
r^{*} I r^{*} I
$$

Induction on $k=$ number of transitions.
Base case: $k=0$, so $p=q, x=e$.

$$
\begin{aligned}
& \text { sitions. } \\
& \text { RHS } A_{p p} \Rightarrow^{*} \varepsilon .\left(\begin{array}{ll}
0 & A_{p p} \rightarrow \varepsilon \\
0 & A_{p p}
\end{array}\right)
\end{aligned}
$$

Ind Hyp:: True for $k=0 \ldots n$
Ind Step: $(p, x, e)|-\ldots|-\ldots(n+1)$ times $1-(q, e, e)$

$$
(p, x, \varepsilon)+\left(p_{1}^{\prime} x^{\prime}, e\right) \quad a \in \Sigma_{\varepsilon}
$$

Case analysis

$$
\ell\left(q^{\prime}, y^{\prime}, c\right)+(q, y, \varepsilon)
$$

Stack is empty only at beginning and at end First symbol pushed (c) must be popped at last. $\left.\left(p, a x^{\prime} b, e\right) H\left(p^{\prime}, x^{\prime} b, c\right) 1-t\right)$

$$
\left.p_{x}^{\prime} c\right)_{\left(q^{\prime}, b, c\right)}-(q, e, e)
$$

$$
\left(p^{\prime}, c\right) \text { in } d(p, a, e) \&(q, e) \text { in } d(q, b, c) \Rightarrow
$$

$G$ has rule $\left.A(p, q) \Rightarrow a A\left(p_{q}^{\prime}\right)^{\prime}\right) b$.
Since $\left(p_{1}^{\prime}, x^{\prime} b, c\right) 1-\star(q, b, c)$ without emptying stack, none of its transitions can depend on the con the stack. So, the following is also a valid transition: $\left(p^{\prime}, x^{\prime}, e\right) 1-\lambda\left(q^{\prime}, e, e\right)$. Helps. $b \psi^{\prime}$

Stack is empty in the middle too $\quad y^{\prime}=b y=a x^{\prime \prime} b$ Exercise

$$
A_{p q} \rightarrow a A_{p q} q^{1 b}
$$

$$
\delta(p, a, \varepsilon) \ni\left(p^{\prime}, c\right)
$$

$$
\delta\left(q^{\prime}, b, c\right) \rightarrow(q, \varepsilon)
$$

By $I H, A\left(p^{\prime} q^{\prime}\right) \Rightarrow \star x^{\prime}$.
Therefore, $A(p, q) \Rightarrow a A\left(p^{\prime}, q^{\prime}\right) b \Rightarrow a x^{\prime} b$. $x$

CFG to PDA
Construct PDA from $G: G$ generates $w$ iff PDA accepts $w$. PDA: Non-deterministically guess the derivation/parse tree $S$



Show that ...
$\{w$ over $\{a, b, c\}: \# a(w)=\# b(w)=\# c(w)\}$ is not CFL
$L=$ above language

$$
L 1=a^{\star} b^{\star} c^{\star}
$$

Prove that $L$ intersect $L 1$ is not CFL.
Then prove that $L$ is not CFL.

Closure under NOPREFIX Not closed under
$\operatorname{NOP}(L)=\{\omega$ in $L$ st. no proper prefix of $w$ is in $L\} \quad$ NO P

$$
\begin{aligned}
& L_{1}=\left\{a^{n} b^{m} c: n \neq m, n \geqslant 1, m \geqslant 1\right\}=\left\{a^{n} b^{m}:\left|w_{2 m}^{m}\right| d a_{3}\right. \\
& L_{2}=\left\{a^{n} b^{m} c^{m}: n \geqslant 1, m \geqslant 1\right\} \underset{\rightarrow C F L}{L=L_{1} \cup L_{2}}
\end{aligned}
$$

What is $\operatorname{NOP(L1)=?~}$
What is $N O P(L 2)=$ ?
What is $\operatorname{NOP}(L 1 \cup L 2)=$ ?
Prove that $L 1$ is CFL, $L 2$ is $C F L$ and $L$ is
(2.) How to prove NOP(L) is NOT CFL?

Let $L 3=a^{\star} b^{\star} c c c^{\star}$
What is $L 4=\operatorname{NOP}(L)$ intersect $\left.L 3 ?=\left\{a^{n} b^{n} c^{n}: n^{n} \geqslant 2\right\},\right\}$
How to prove that $L 4$ is not CFL?


Cop or to
$\cup\{\dot{\varepsilon}, a b c\}$

Prove $L=\left\{w=a^{\star} b^{\star}: \#(a, w)!=\#(b, w)\right.$ and \#(a,w)!=2\#(b,w)\} is CFL.
Divide $L=L 1 \cup L 2 \cup L 3$ and show that each is CFL.

Exercise: Show that $L 1=\left\{w=a^{\star} b \star: \#(a, w)<\#(b, w)\right\}$ is CFL.
Exercise: Show that $L 2=\left\{w=a^{\star} b^{\star}: \#(a, w)>2 \#(b, w)\right\}$ is CFL.

Show that $L 3=\{w=a \star b \star: \#(b, w)<\#(a, w)<2 \#(b, w)\}$
Let $i=\#(a, w), j=\#(b, w)$
Show that $i=k+2 h$ and $j=k+h$.

