CSE322 Theory of Computation $(L 3,4)$

Recap of last lecture
https://automatonsimulator.com/

Today
Correctness of DFA
Correctness of NFA
Cextended tr. function is
not to be used for HQ1, HQ2)

Correctness of DFA \& NFA

$K=\{e\} \cup\{w: w$ starts with a or b, and is followed by zero $||a a b|=3$
Fro $r_{1} r_{n} \cdot r_{3}$ sk.
(1) (2) (3)

Set of strings
or more sequences of the string ' $a b$ ' $\}$
b) $K \leqslant L(D)$

Is" $(D)=K ?$
a) $L(D) \subseteq K$
$\forall x \in L(D)$,
$\forall y \in k, y \in L(D)$

$$
\begin{aligned}
& \text { Let } r_{0}=p_{0}, r_{1}=p_{1} \text {, } \\
& r_{2}=p_{2}, r_{3}=p_{1}
\end{aligned}
$$

(1) $r_{0}=p_{0} V$
(2) $r_{3}=p_{1} \in F V$
(3)

$$
\begin{aligned}
& \delta\left(r_{0}^{=}+a\right)=r_{1}-\phi_{1} \checkmark \\
& \delta\left(r_{1}^{-p \mid a}\right)=r_{2}=p_{2} v \\
& \delta\left(r_{2}^{+2}-1, b\right)=r_{3}=p_{1} J
\end{aligned}
$$

Extended-delta/transition fr

$$
\hat{\delta}: Q \times \Sigma^{\infty} \rightarrow Q
$$ concatenation

Sometimes $\hat{\delta}$ will be writenas δ^{\prime}
ar s $\vec{a} \overrightarrow{a^{2}} \vec{b}^{\text {(}}$
$\hat{\delta}(q, \epsilon)=q \quad \hat{\delta}(q, x \cdot a)=\delta(\underbrace{\hat{\delta}}_{q^{\prime}}(q, x), a)$
$x \in \Sigma^{*}$
$a \in \Sigma$
$\hat{\delta}\left(Q^{\prime}, w\right)$: action of $F A$ starting from any state in Q^{\prime} \& string w

Q: Redefine " M accepts x " using extended trans. fr.
Claim:- Maccefts x ifs $\hat{\delta}(q 0, x) \in F \quad \mid$ when $|x|=0 \Rightarrow x=\varepsilon \hat{\delta}$

$$
=\left\langle\cdots, q_{6} \cdots\right\rangle
$$

$$
M \text { accepts } \varepsilon \text { iff } \underbrace{\hat{\delta}(90, \varepsilon) \in F}_{90}
$$

Proof:- Proof by induction on length of x (Exercicie) $\Rightarrow M$ accepts ε if $q_{E E F}^{q 0}$ (already holds)

Proof of correctness

$L=\{x: x$ is a binary string that ends with aa $\}$
Prove that: $L(D)=L \Leftrightarrow x \in L(D)$ iff $x \in L \Leftrightarrow x \in L$ iff $\tilde{\delta}(q 0, x) \in F$

$$
x=y \cdot a
$$

$$
\hat{\delta}(q 0, y)
$$

a) if $x \in L$, then $\hat{\delta}(q 0, x) \in F$
b) if $\hat{\delta}(90(x) \in F$ then $x \in L$.

What can we say about "computations" ending in qu? qu n ? ${ }^{2}$ po
What can we say about "computations" ending in qp? qom ming
What can we say about "computations" ending in q2? $90 \sim 2 \sim L$

Proof of correctness

$L 1=\{x: x$ is a binary string that ends with aa $\}$
Prove that $L(N)=L 1$
Level-1: By definition, w is in $L 1$ iff $q 2=\delta^{\prime}(q 0, w)$. We will do induction on the length of w to prove the following 3 facts.
(1) $w=e$ or w ends in b iff $\delta^{\prime}(q 0, w)=q 0$
(1) $(\varepsilon=\varepsilon$ or ε ends in $b) \operatorname{iff}\binom{\hat{\delta}(q 9, \varepsilon)=q 0}{=90}$
(2) $w=a$ or w ends in ba iff $\delta^{\prime}(q 0, w)=q 1$
(3) w ends in $a a$ of $\delta^{\prime}(q 0, w)=q 2$
(2) $(\varepsilon=a$ or ε ends in ba) if $(\hat{\delta}(q 0, \varepsilon)=q 1)$

Pase
False
Level-2:
(3) E ends in aa iff $\hat{\delta}(q 0, \varepsilon)=q 2$
fake
(Base case) $|\omega|=0$, ie., $w=e$. (Prove all three iff statements)
Induction hypothesis: All three facts are true for any string of length $<=n$.
Induction step: To show that all three facts are true for any w of length $n+1$.

Let $\omega=x \cdot s$ where $s \in \sum, x \in \sum^{*}$ and $|x|=n$
Proving (1) forward direction If $x s=\mathcal{z}$ or $x \operatorname{sends}$ in b then $\hat{\delta}\left(q 0, x_{\delta}\right)=90$
$\operatorname{det} w, \varepsilon$ or w ends in $\rightarrow^{i} b$. To show $\delta^{\prime}(q 0, x b)=q 0=\delta(\underbrace{q, ~} \underbrace{q}, x), b)=\delta\left(q^{\prime}, b\right)=q^{\prime}$

$$
\because|w| \geqslant 1 \quad \because \hat{\delta}(q, b)=q 0 \quad \forall q \in Q \quad \therefore \delta^{\prime}(q 0, x \cdot b)=\delta^{\prime}\left(\delta^{\prime}(q 0, x), b\right)=q 0
$$

Proving (1) backward direction
Let $\delta^{\prime}(q 0, x s)=q 0$. To show $w \neq e$ or w ends in b.
 $q 0=\delta^{6} \delta\left(\delta^{\prime}(q 0, x), s\right) \quad$ No tate $q^{\prime} \quad \delta!\delta\left(q^{\prime}, a\right)=q 0 \therefore S \neq a$
$\left.\begin{array}{l}\left.\text { Suppose } s=a \text {. But } \forall q \in Q, \delta^{*}(q, a) \neq q 0: \delta^{\prime}\left(\delta^{\prime}(q 0, x), s\right) \neq q 0 .\right\} \therefore s=b \\ \text { On the other hand, if } s=b \text {, then } \forall q \in Q, \delta^{\prime}(q, s)=q 0\end{array}\right\} \therefore s=b$

Proving (3) forward direction

$$
\mid \text { ya } \mid=n
$$

Let ω end in $a a$, i.e., $\omega=x a=$ ya where $|y|=n-1$. To show $\delta^{\prime}(q 0, y a a)=q^{2}$ yacan be of there types $\left\{\begin{array}{l}y a=a \text {. Then, } \delta^{\prime}(q 0, y a)=\delta^{\prime}(q 0, a)=q 1 \\ \left.y a \text { ends in ba. Then } \delta^{\prime}(q 0, y a)=q 1(b y \mid H)\right\} \delta^{\prime}(q 0, y a a)= \\ y a \text { ends in } a a . \text { Then } \delta^{\prime}\left(q^{0}, y a\right)=q^{2}(b y \mid H) \Rightarrow \delta^{\prime}(q 0, y a a)\end{array}\right.$

$$
=\delta^{\prime}\left(q^{2}, a\right)=q^{2}
$$

Proving (3) backward direction
Let $\delta^{\prime}(q 0, x s)=q^{2}$. To show x ends in aa.

$$
\left.\begin{array}{l}
\text { So, } q\left(\delta^{\prime}\left(q^{0}, x\right), s\right)=q^{2} \quad x \text { ends in } a \text { and } s=a . \\
\because \delta(q, b) \neq q^{2} \forall q, \delta(q, a) \neq q^{2}, \delta\left(q^{1}, a\right)=q^{2}, \delta\left(q^{2}, a\right)=q^{2}
\end{array}\right\} \begin{aligned}
& \delta^{\prime}\left(q^{0}, x\right) \in\left\{q^{1}, q^{2}\right\} \\
& s=a
\end{aligned}
$$

Case $\delta^{\prime}(q ;, x)=q 1$. Since $|x|=n$, by $\mid H, x=a$ or x ends in ba. In all cases, $x a$ ends
Case $\delta^{\prime}(q, x)=q^{2}$. Since $|x|=n$, by $1 H, x$ ends in $a a$. $\left\{\begin{array}{l}\text { in aa which } \\ \text { proves the IS for (3). }\end{array}\right.$
(2) Exercise.

Extended transition function for NFA

$$
\begin{equation*}
\hat{\delta}(q, \varepsilon)=\} \cdot\{q, q 1, q z, q\}\}=E(q) \tag{a}
\end{equation*}
$$

E-closure
For any set $R \subseteq Q, E(R)$ is defined recursively as:
(4) $R \subseteq E(R)$
(6) $\forall q \in E(R), \frac{\delta(q, \varepsilon)}{N F A} \subseteq E(R)$

Algo Imbualice $F(C)=R$
Keepapplying (2) wwill ER) changes

$E(1)=\{1,3\}$
$E(q)=\{q^{\prime} \mid q \overbrace{}^{0 \text { or more e-ules }}$
$E(2)=\{2\}$
$E(\{q 1, q 2, \ldots, q k\})=$?
$E(3)=\{3\}$
$E(1,3)=\{1,3\}$
$E(1,2)=$
$E(2,3)=\{2,3\}$
Exercise
$E(1,2,3)=3$
Exeracse
$E(\})=\{ \}$

Extended transition function for NF A

$$
\begin{aligned}
& \hat{\delta}(q, \varepsilon)=? E(s q, z)
\end{aligned}
$$

$$
\begin{aligned}
& r \in B(\cdots \cdot .)
\end{aligned}
$$

Claim.-

- An NFA $N=\left\langle Q \sum_{1}, \delta, q_{0}, F\right\rangle$ accepts a string x if $\hat{\delta}(0, x) \cap F \neq \phi$

Proof of correctness

Prove that $L(N)=L 1$.
Naccepts ω if $w \in L 1$
$\hat{\delta}\left(q_{s, i}\right) \ni q_{01}$ iff ω ends in 01.
Proof level -1: By definition, $\omega \in L I$ if $q_{0} \in \hat{\delta}\left(q_{s}, \omega\right)$. We will use induction on the length of ω to prove the following 3 facts:
(a) ω ends in 01 iff $q_{a} \in \hat{\delta}\left(q_{s}, \omega\right)$,
(b) ω ends in 0 iffy $q_{0} \in \hat{\delta}\left(q_{s}, \omega\right)$
(c) For all $\omega, \quad q_{s} \in \hat{\delta}\left(q_{s}, \omega\right)$

Difficult to show correct by
Proof level-2:
Base case: $|\omega|=0$
Induction step: $w=x a$, for $|x|=n$ and a is a symbol.
Assume that induction claims are valid for x.

Assume that induction claims are valid for x.
That is,
(1) x ends in 01 iff $\hat{\delta}\left(q_{s}, x\right) \geqslant q_{01}$
(2.) x ends in 0 iff $\hat{\delta}\left(q_{s}, x\right) \ni q_{0}$
(3) For all $x, \hat{\delta}\left(q_{s}, x\right) \ni q_{s}$

To show that
(1) $x a$ ends in 01 iff $\hat{\delta}\left(q_{s}, x a\right) \ni q_{01}$
(2) $x a$ ends in 0 iff $\hat{\delta}\left(q_{s}, x a\right) \ni q_{0}$
(3) For all $x, a \hat{\delta}\left(q_{s}, x a\right) \ni q_{s}$

