CSE322 Theory of Computation(L3,4)

Recap of last lecture

https://automatonsimulator.com/

Today

Correctness of DFA Correctness of NFA

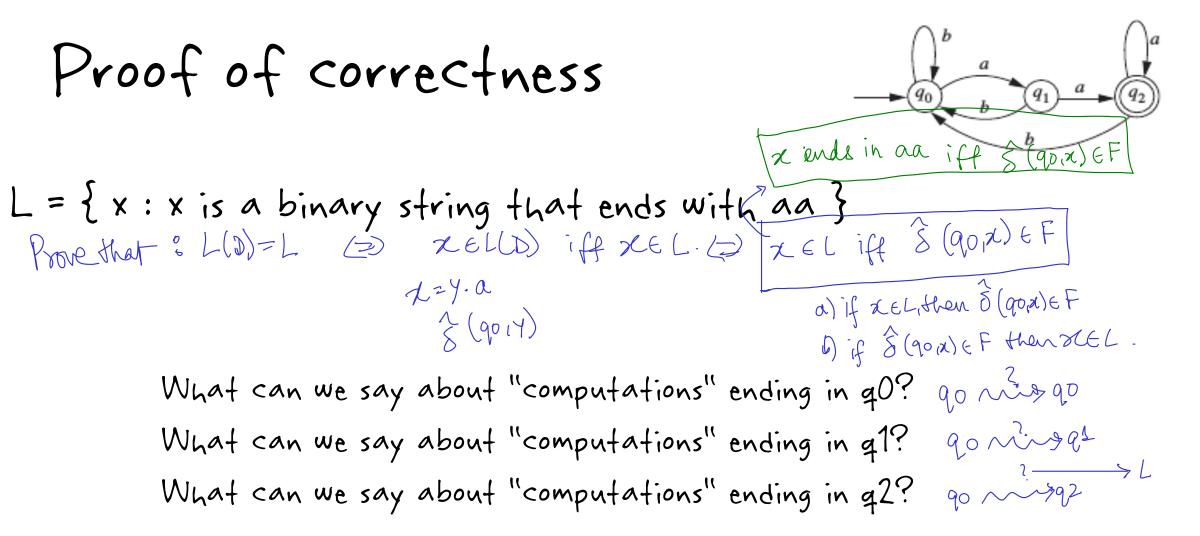
(extended tr. function is not to be used for HQ1, HQ2)

Extended-delta / transition fue.

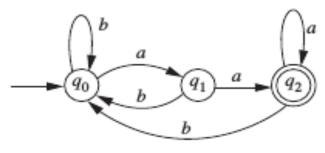
$$\delta: Q \times \Sigma^* \to Q$$

 $\delta: Q \times \Sigma^* \to Q$
 $\delta: Q \times Z^* \to Q$
 $\delta: Q \times Q$

Q: Redefine "M accepts x" using extended trans. fn. Claim:- Maccepts X iff $\hat{S}(90, x) \in F$ |when $|x|=0 \Rightarrow x=\varepsilon$ $= \angle \cdots, 9\varepsilon^{-1}$ Proof:- Proof by induction on layeth of x. \Rightarrow Maccepts ε iff $\hat{S}(90,\varepsilon)\in F$ $= \angle \cdots, 9\varepsilon^{-1}$



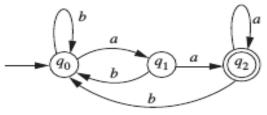
Proof of correctness



L1 = { x : x is a binary string that ends with aa } Prove that L(N) = L1 Level-1: By definition, w is in L1 iff q2 O'(q0,w). We will do induction on the length = (1) $(\xi = \xi \text{ or } \xi \text{ ends in } b)$ iff $(\hat{\xi}(qo_1\xi) = qb)$ True -qoof w to prove the following 3 facts. (1) w=e or w ends in b iff $\delta'(q0,w)=q0$ (2) (z=a or z endein ba) iff (ŝ (9012)=91)
False
(3) z endein aa iff ŝ (9012)=92 (2) w=a or w ends in ba iff $\delta'(q0,w)=q1$ (3) wends in an iff $\delta'(q0,w)=q2$ Level-2: fabe (Base case) |w|=0, i.e., w=e. (Prove all three iff statements) Induction hypothesis: All three facts are true for any string of length <= n. Induction step: To show that all three facts are true for any w of length n+1.

det
$$W = z \cdot s$$
 where $s \in E$, $z \in Z^*$ and $|x| = n$
Proving (1) forward direction If $xs = z$ or xs ends in b then $\delta(q_0, x_s) = q_0$
det $W = z \cdot s$ we ends $x = b$. To show $\delta'(q_0, x_b) = q_0 = \delta(\delta(q_0, x_{1,b}) = \delta(q_{1,b}) = q_0$
 $\forall w = z \cdot s = b$
 $det \delta'(q_0, x_s) = q_0$. To show $W = z$ or w ends in b .
 $q_0 = \delta(\delta'(q_0, x_{1,s}) = x_s = b)$
No state $q' \leq s = \delta(q'_1a) = q_0$ $\leq z = a$

Auppose s=a. But $\forall q \in Q$, $\delta^{\bullet}(q, a) \neq q \circ :$ $\delta'(\delta'(q \circ, z), s) \neq q \circ .$ On the other hand, if s=b, then $\forall q \in Q$, $\delta'(q, s) = q \circ$ $\int \cdots s = b$

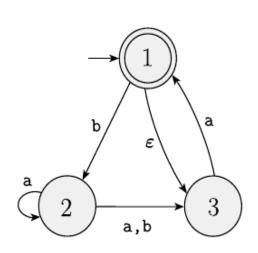


Proving (3) forward direction
Let
$$w$$
 end in aa, i.e., $w = xa = yaa$ where $|y| = n-1$. To show $\delta'(q_0, yaa) = q_2$
yacan be of there types $\begin{cases} ya = a & \text{Then}, \delta'(q_0, ya) = \delta'(q_0, a) = q_1 & \delta'(q_0, yaa) = q_2 \\ ya ends in ba. Then \delta'(q_0, ya) = q_1 & (by |H) \\ ya ends in aa. Then \delta'(q_0, ya) = q_2 & (by |H) \Rightarrow \delta'(q_0, yaa) \\ = \delta'(q_2, a) = q_2 \end{cases}$

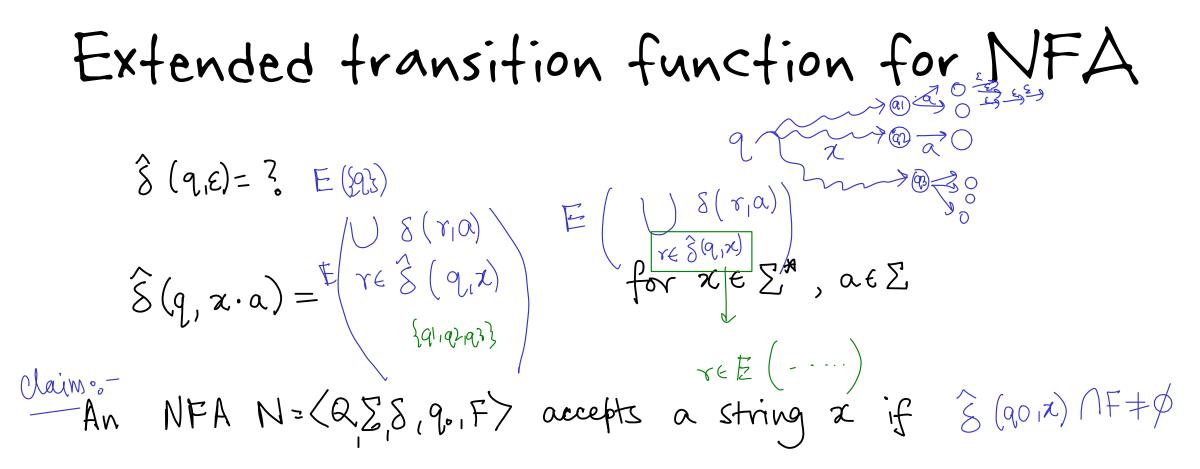
$$\begin{array}{l} & \text{det } S'(q0, xs) = q2. \text{ To show } xs \text{ ends in } aa, \\ & x \text{ ends in } a \text{ and } s=a. \\ & So, Q\left(S'\left(q0, x\right)_{1}s\right) = q2 \\ & \vdots \text{ s}\left(q, b\right) \neq q2 \forall q, S\left(q0, a\right) \neq q^{2}, S\left(q^{1}, a\right) = q^{2}, S\left(q^{2}, a\right) = q^{2} \right) \\ & S\left(q, b\right) \neq q2 \forall q, S\left(q0, a\right) \neq q^{2}, S\left(q^{1}, a\right) = q^{2}, S\left(q^{2}, a\right) = q^{2} \right) \\ & S\left(q, b\right) \neq q^{2} \forall q, S\left(q0, a\right) \neq q^{2}, S\left(q^{1}, a\right) = q^{2}, S\left(q^{2}, a\right) = q^{2} \right) \\ & S\left(q, b\right) \neq q^{2} \forall q, S\left(q0, a\right) \neq q^{2}, S\left(q^{1}, a\right) = q^{2}, S\left(q^{2}, a\right) = q^{2} \right) \\ & S\left(q, b\right) \neq q^{2} \forall q, S\left(q0, a\right) \neq q^{2}, S\left(q^{1}, a\right) = q^{2}, S\left(q^{2}, a\right) = q^{2} \right) \\ & S\left(q^{0}, x\right) = q^{1}. \text{ Since } |x| = n, \text{ by IH}, x = a \text{ or } x \text{ ends in } ba. \\ & S\left(q^{0}, x\right) = q^{2}. \text{ Since } |x| = n, \text{ by IH}, x \text{ ends in } aa. \\ & S\left(q^{0}, x\right) = q^{2}. \text{ Since } |x| = n, \text{ by IH}, x \text{ ends in } aa. \\ & S\left(q^{0}, x\right) = q^{2}. \text{ Since } |x| = n, \text{ by IH}, x \text{ ends in } aa. \\ & S\left(q^{0}, x\right) = q^{2}. \text{ Since } |x| = n, \text{ by IH}, x \text{ ends in } aa. \\ & S\left(q^{0}, x\right) = q^{2}. \text{ Since } |x| = n, \text{ by IH}, x \text{ ends in } aa. \\ & S\left(q^{0}, x\right) = q^{2}. \text{ Since } |x| = n, \text{ by IH}, x \text{ ends in } aa. \\ & S\left(q^{0}, x\right) = q^{2}. \text{ Since } |x| = n, \text{ by IH}, x \text{ ends in } aa. \\ & S\left(q^{0}, x\right) = q^{2}. \text{ Since } |x| = n, \text{ by IH}, x \text{ ends in } aa. \\ & S\left(q^{0}, x\right) = q^{2}. \\ & S\left(q^{0}, x\right) = q^{2}. \text{ Since } |x| = n, \text{ by IH}, x \text{ ends in } aa. \\ & S\left(q^{0}, x\right) = q^{2}. \\$$

(2) Exercise.

Extended transition function for NFA $\hat{S}(q,\varepsilon) = \frac{3}{2} \{q,q1,q2,q3\} = E(q)$ $\underline{S}(q,\varepsilon) = \frac{3}{2} \{q,q1,q2,q3\} = E(q)$ $\underline{S}(q,q1,q3) = E(q)$ $\underline{S}(q,q1,q3) = E(q)$ $\underline{S}(q,q1,q3) = E(q)$



 $E(1) = \{1, 3\} \qquad E(q) = \{q' \mid q & 0 \text{ or more } s \text{-rules} \\ E(2) = \{2\} & E(\{q, 1, q, 2, ..., q, k\}) = ? \\ E(3) = \{3\} & E(\{1, 2\}) = ? \\ E(1, 3) = \{1, 3\} & E(1, 2, 3) = ? \\ E(2, 3) = \{2, 3\} & E(\{\}) = \{3\} \\ E(\{\}\}) = \{3\}$



Proof of correctness
N:
$$(a_s)^{0,1}$$
 $(b_s)^{-1}$ (b_s) $L1 = \{w \text{ endin with } 01\}$
Prove that $L(N) = L1$.
Noncepts w iff $wold$
 $g(a_{k,w}) \Rightarrow g_{0,1}$ iff $w \text{ endin } 01$
Proof level-1: By definition, $w \in L1$ iff $g_{0,1} \in \hat{\delta}(g_{0,1}w)$. We will use induction on
the length of w to prove the following 3 fuels:
 $(a_1) w \text{ ends in } 01$ iff $g_{0,1} \in \hat{\delta}(g_{0,1}w)$. We will use induction on
 $(b_1) w \text{ ends in } 01$ iff $g_{0,1} \in \hat{\delta}(g_{0,1}w)$
 $(b_1) w \text{ ends in } 01$ iff $g_{0,2} \in \hat{\delta}(g_{0,1}w)$
 $(c_1) \text{ for all } w, g_{0,2} \in \hat{\delta}(g_{0,1}w)$
Proof level-2:
Base case: $|w| = 0$
Induction step: $w = xa$, for $|x| = n$ and a is a symbol.
Assume that induction claims are valid for x .

•••

Assume that induction claims are valid for x.
That is,
① X ends in 01 iff
$$\hat{S}(q_{s,X}) \ni q_{01}$$

② X ends in 0 iff $\hat{S}(q_{s,X}) \ni q_{0}$
③ For all X, $\hat{S}(q_{s,X}) \ni q_{s}$
To show that
① Xa ends in 01 iff $\hat{S}(q_{s,Xa}) \ni q_{01}$
② Xa ends in 0 iff $\hat{S}(q_{s,Xa}) \ni q_{0}$
③ For all X, a $\hat{S}(q_{s,Xa}) \ni q_{s}$