CSE322 Theory of Computation $(L 3,4)$

Recap of last lecture
https://automatonsimulator.com/

Today
Correctness of DFA
MFA
Formalization of DFA

Does this DFA accept e?

Does this DFA accept e?

$$
D F A=\langle Q, \Sigma, \delta, q 0, F\rangle
$$

DFA "accepts" $\frac{e}{s}$ if its ends up in an accept state after reading 5. Z Formal definition Suppose $\varepsilon_{s=}=\omega_{1}, \cdots \omega_{n}$ where n denotes $|s|$. Then there must ex is states $r_{0} \ldots r_{n} s t$
(1) $r_{0}=q_{0}$
(2) $\left.r_{n}^{r_{0}} \in F\right\} q_{0} \in F$
(3) $\forall i=0$ to $n-1, \quad \delta\left(r_{i}, \omega_{i+1}\right)=r_{i+1}$
https://automatonsimulator.com/
Q. Construct a DFA whose language is \{binary string ending with 00$\}$

Q. Construct a DFA whose language is $\}$.

Non-deterministic FA
"If at each stage the motion of a machine ... is completely determined by the configuration, we shall call the machine an "automatic machine" (or a-machine). For some purposes we might use machines (choice machines or c-machines) whose motion is only partially determined by the configuration.... When such a machine reaches one of these ambiguous configurations, it cannot go on until some arbitrary choice has been made by an external operator." - Turing (On Computable Numbers)
Rabin, M. O.; Scott, D. (1959).
"Finite automata and their decision problems.".

NFA accepts s if there is "any" sequence of transitions for which NF A ends up in an "accept" state after readings.

NF

Trace the behaviour for 0010
Trace the behaviour for 1110

q_{a}	q_{a}	q_{a}
\downarrow_{0}	\downarrow_{0}	$\downarrow 0$
q_{a}	q_{a}	\downarrow_{b}
\downarrow_{0}	\downarrow_{0}	\downarrow_{0}
q_{b}	q_{a}	\downarrow_{0}
\downarrow_{1}	\downarrow_{1}	not valid
q_{c}	q_{a}	choice
\downarrow_{0}	$\downarrow 0$	
q_{c}	q_{b}	
accepted	not a final bäte	

0010 is accefpled
N accepts if there is any path that ends in an accepting state. N does not accepts otherwise. (no explicit notion of "reject")

At state X, NFA "non-deterministically" decides on one of the allowed transitions. If there are no allowed transitions, then the relevant non-deterministic choices are thought to be invalid ones. NFA accepts x if there are SOME VALID non-deterministic choices THAT lead the NFA to A FINAL STATE.

DFA is also an NFA

$$
L(N)=?\left\{\begin{array}{l}
\{\omega:|w| \geqslant 3,3 \text { nd last } \\
\text { symbed ot } w \text { is } 1\}
\end{array}\right.
$$

Q: Construct an NFA recognizing $\{1\}$ alphabet $\{0,1\}$
Formalization of NF A

δ	0	1
X	$\{x, P\}$	$\{x\}$
Y	\varnothing	$\{Z\}$
valid $* Z$	$\{Z\}$	$\{Z\}$

choices AND valid choices that do not lead to a final state.

$$
\begin{aligned}
\delta(\text { state, symbol }) & =\text { single state DFA } \quad \delta: Q \times \Sigma \rightarrow P(Q) \\
& =\text { set of states NFA }
\end{aligned}
$$

$$
N F A=\langle Q, \Sigma, \delta, q 0, F\rangle
$$

NFA accepts x if $\ldots \times$ can be wistiten $a_{0} x=\omega_{1} \cdots \omega_{n}$ where $\omega_{i} \in \sum$, and I states (ro...2n) sh sequence of stater on a valid sequence of transactions
(1) $r_{0}=90$
(2) $r_{n} \in F$
(3) $\forall i=1 \cdots n$

$$
\begin{aligned}
& \delta\left(r_{i-1}, \omega_{i}\right)=r_{i} \times(D F A) \\
& r_{i} \in \delta\left(r_{i-1}, w_{i}\right) \\
& \left(r_{i} \text { is a valid choice }\right)
\end{aligned}
$$

ε : empty string, $|\varepsilon|=0, \varepsilon \cdot a=a=a \cdot \varepsilon$ ENFA

Is O accepted?
Is 11 accepted? $q_{1} \xrightarrow{1} q_{2} \xrightarrow{2} q_{3} \xrightarrow{1} q_{1}$
Is 00 accepted?
Is 0101 accepted? q $\xrightarrow[0]{ }, q a^{1} q_{2} \xrightarrow{0} q^{3} \xrightarrow{1} q_{4}$
Is 010101 accepted?
Is 01010101010101 accepted?
 zero or more occurrence of (abb) followed by zero of more occurrence of (hab)

Can you construct a DFA for the above language?
Can you prove that your NFA is correct?

11 is accepted: $q 1 \rightarrow q^{2} \underset{\varepsilon}{ } q_{3} \rightarrow q 4$

$\begin{array}{lll}\varepsilon-N F A=\left\langle Q, \sum_{i}^{\prime}, \delta, q 0, F\right\rangle & \left.\sum_{\varepsilon}=\sum \cup\{\varepsilon\}\right\} \\ \Sigma-N F A \text { accepts } \times \text { if } \ldots\end{array}$

ع-NFA accepts x if..
$\exists m, n, x$ can be witters $x=\omega_{1} \ldots \omega_{m}$ where $\omega_{i} \in \Sigma_{\varepsilon}$,
NFA does not care about invalid choices AND valid choices that $\exists r_{0} \cdots r_{m}, \quad r_{i} \in Q, \forall i=0 \cdots m$, st.
(1) $r_{0}=q_{0}$
(2) $r_{m} \in F$
(3)

$$
\begin{aligned}
& \forall_{i}=1 \cdots m, \\
& r_{i} \in \delta\left(r_{i-1}, w_{i}\right)
\end{aligned}
$$

δ	0	1	ε
$q 1$	$\{q 1\}$		ϕ
$q 2$			
$q 3$		Ex:fil	
$q 4$		000	

